Empirical Analysis of Call Center Traffic

Lawrence D. Brown
Wharton School, U. of Penn.

Presentation for Call Center Forum
Wharton Financial Institutions Center
May 8, 2003

Joint work with
Linda Zhao, Haipeng Shen, Xuefeng Li, Jonathan Weinberg

Also based on
“Statistical analysis of a Telephone Call Center: A Queueing Science Perspective”, by Lawrence Brown, Noah Gans, Avishai Mandelbaum, Anat Sakov, Haipeng Shen, Sergey Zeltyn and Linda Zhao
available at http://fic.wharton.upenn.edu/fic/papers/03.html.
Two Data Resources:

1. An Israeli Bank Call Center
   a. Gathered in 1999
   b. Relatively small size (10-15 agents)
   c. Analyzed in depth in “Statistical analysis of a Telephone Call Center: A Queueing Science Perspective”

2. A Northeastern U.S. Bank Call Center
   a. Gathered mid 2001 to date
   b. Relatively large size (~600 agents in 3 locations)
   c. Preliminary analysis of data in progress

Today’s talk mostly uses data from the US bank, but
In analyses motivated by those developed for the Israeli bank data.
Numbers are average call volumes on an ordinary weekday at US Center.
(Ave.wait for all those (=56K) entering “Service Q” is ~12 sec.)
Structure of Data

*For each Call:*

Date and Time (in seconds) of

- Arrival to VRU
- Completion of VRU activity
- Arrival to Service-Q (if so)
- “Abandonment” by customer or of Answer by Agent
- Completion of Service

Other Information

- Type of Agent service (“Regular”, “Premier”, etc.)
- Identity of Agent(s*) (coded), if any involved
- Locations of Call arrival and service*
- Other time and some covariate information*

* = information not used in current analyses
Day #1 = March 1, 2002
Day #122 = June 30, 2002

Note Missing Day (= Memorial Day Holiday)

Pattern:
Decreased volumes on Sat. and Sun.
Fluctuations during week, but no special pattern
Time Series: Calls to “Service Q”
(“Agent” + “Hang” Calls)

Day #1 = March 1, 2002       Day #122 = June 30, 2002

Note Daily Pattern (Decreasing volume as week progresses)
Time Series: (VRU only)/10000

Day #1 = March 1, 2002       Day #122 = June 30, 2002

Note Daily Pattern (Generally mildly increasing from Mon. to Fri.)

VRU is important. BUT
Remainder of talk is about Q & Agent component.
Service-Q Arrivals
by Time-of-Day & Day-of-Week
MONDAY

Plot shows (spline-smooth of)

\[
\text{Normalized Arrivals}_{\text{given day}} = \frac{\text{Arrivals per Hour}_{\text{that day}}}{\text{Average}_{\text{that day}} (\text{arriv's. per hour})}
\]

The variable “time” is on a 24 hour clock.

\[
\text{Red} = 8/05/02 \quad \text{Blue} = 8/19/02 \quad \text{Green} = 8/12/02 \quad \text{Yellow} = 8/26/02
\]
Service-Q Arrivals
Friday

Note Dip between 7 & 7:30 am
Friday

Has characteristic beginning dip, AND
Daily volume shifted to (slightly) earlier in the day

Y
- Norm'ized Arr's 8/2/02
- Norm'ized Arr's 8/9/02
- Norm'ized Pred for 8/5/02
- Norm'ized Pred for 8/12/02
Details of Fitting Process

• Divide day (7am to midnight) into time intervals of 150 seconds (=2½ minutes)
• Count number arrivals in each interval, and make scatterplot
• Fit using a nonparametric regression smoothing technique. (Automated bandwidth/smoothing-parameter techniques are possible, but weren’t used.)

Nonparametric density estimation could also be used here to get similar looking plots, but that method doesn’t extend to create types of plots later in the analysis.
Queueing Structure

- **Staffing**: Number of Agents *On-Active-Duty*
- **Call Load**: *(Number of incoming calls during any time period) × (Potential duration of call)*

This is the minimum number of person-hours of on-duty agents needed to handle all calls in a perfectly lubricated system (if customers time their calls just right and/or are willing to wait as long as needed).

\[
\text{System Utilization} = \frac{\text{Load}}{\text{Staffing}}
\]

- **Consequences** of Load & Staffing:
  - **Average wait**
  - **Customer abandonment**
  (depends on waiting times and on customer patience)
"Agents" = Estimate of number of agents on-duty at that time. [In each 150 second interval an agent is estimated to be on-active-duty for the entire interval if (s)he is on the phone sometime in that interval.]
Note increased usage from 7-7:30 am (typical of Fridays). Note increased average Queue-Wait during this time. (Accompanied by a rise in abandonments to about 10%).

Overall Utilization: 8/02/02 = 88%
8/05/02 = 89%
Weekends are Different!

Sunday 8/18/02

Y

- NumberAgents (s)
- load (s)
- AvgQueueWaitAll (s)

Utilization = 89%
Abandonment Rate peaks at just over 20% (at ~1pm)
Utilization Fluctuates around ~80% 

Time Series: Utilization % each day
entire year (holidays and outliers omitted)

Mean 82.04
Time Series: Utilization %

Regular weekdays only (holidays and outliers omitted)

Mean 82.89
For Comparison
Daily Call Volumes (weekdays)
Prediction of Arrivals

Regularity of arrival density during the day -given day-of-week - has been noted.

Thus, let

\( L_{ij} = \# \) Arrivals on day \( i \) during (150 second) interval \( j \).

\( d(i) = \) Day-of-week of day \( i \).

\( \pi_{dj} = \) theoretical proportion of arrival volume at time \( j \) on a day-of-week \( d \).

MODEL: Given \( L_{i+} \),

\[
L_{ij} = Multin(L_{i+}, \pi_{d(i)j}).
\]

Approximate restatement:

\[
(1) \quad \left\{ \sqrt{L_{ij}} + \frac{1}{4} \right\} \sim \mathbb{N} \left( \sqrt{L_{i+} \pi_{d(i)j}}, \frac{1}{4} \right)
\]
Confirmation of (1)

Use the data, including the observed values of $L_{ij}$, and least squares (maximum likelihood) to fit the model

$$
\sqrt{L_{ij} + \frac{1}{4}} \sim \mathcal{N}\left(\sqrt{L_{ij} + \pi_{d(i)}}, \frac{1}{4}\right).
$$

IF THE MODEL IS CORRECT THEN MSE SHOULD BE APPROXIMATELY $\frac{1}{4}$, AS PREDICTED BY (1).

This was done for August 2002, and we found the following for each $d(i)$:
The values of MSE for each day are given in the following table:

<table>
<thead>
<tr>
<th>week day</th>
<th>Ave Arr Num</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun.</td>
<td>45.90</td>
<td>0.228</td>
</tr>
<tr>
<td>Mon.</td>
<td>299.60</td>
<td>0.263</td>
</tr>
<tr>
<td>Tues.</td>
<td>269.01</td>
<td>0.261</td>
</tr>
<tr>
<td>Wed.</td>
<td>257.27</td>
<td>0.281</td>
</tr>
<tr>
<td>Thur.</td>
<td>262.67</td>
<td>0.350</td>
</tr>
<tr>
<td>Fri.</td>
<td>261.01</td>
<td>0.310</td>
</tr>
<tr>
<td>Sat.</td>
<td>100.02</td>
<td>0.293</td>
</tr>
</tbody>
</table>

The relatively minor excess of MSE over 0.250 is due to (randomness and) to variability of the day-of-week densities. (If arrivals were not inhomogeneous Poisson this could also contribute to excess; but we’ve ruled out such a possibility on the Israeli data, and it thus seems unreasonable here too.)
Predicting the Daily Volume, $L_i^+$

Empirically, this is the tough part!

Knowing the day-of-week of course helps:

**Calls to Service-Q by Day-of-Week**
Calls to Service-Q by Day-of-Week

Means and Std Errors

<table>
<thead>
<tr>
<th>Day</th>
<th>Number</th>
<th>Mean</th>
<th>Std Err</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>44</td>
<td>6.23</td>
<td>0.074</td>
<td>6.08</td>
<td>6.37</td>
</tr>
<tr>
<td>Tue</td>
<td>49</td>
<td>5.63</td>
<td>0.077</td>
<td>5.47</td>
<td>5.78</td>
</tr>
<tr>
<td>Wed</td>
<td>49</td>
<td>5.33</td>
<td>0.060</td>
<td>5.21</td>
<td>5.44</td>
</tr>
<tr>
<td>Thurs</td>
<td>50</td>
<td>5.33</td>
<td>0.053</td>
<td>5.23</td>
<td>5.44</td>
</tr>
<tr>
<td>Fri</td>
<td>52</td>
<td>5.31</td>
<td>0.059</td>
<td>5.20</td>
<td>5.43</td>
</tr>
<tr>
<td>Sat</td>
<td>52</td>
<td>2.22</td>
<td>0.053</td>
<td>2.12</td>
<td>2.33</td>
</tr>
<tr>
<td>Sun</td>
<td>51</td>
<td>1.05</td>
<td>0.035</td>
<td>0.98</td>
<td>1.12</td>
</tr>
</tbody>
</table>

ANOVA followed by a Tukey-Kramer-Hayter Multiple Comparison Test (at level $\alpha = 0.05$) yields as significant comparisons:

**WED**

**MON > TUE > THU > SAT > SUN**

**FRI**
Such a Model Still Isn’t Very Good!

**IF** the $L_{i+}$ were well predicted by a day-of week effect, **THEN** they would be Poisson ($\lambda_d$).

Correspondingly, (approximately)

$$\sqrt{L_{i+} + 1/4} \sim N\left(\sqrt{\lambda_{d(i)}}, \frac{1}{4}\right).$$

An ANOVA of $\sqrt{L_{i+} + 1/4}$ on $d(i)$ yields

$$\text{MSE} = 110.3$$

This is

**Much Bigger Than**

the target value of $\text{MSE} = 1/4$.

**Conclusion:** Fluctuations in daily volume are **not** well explained by only the day-of-week and random Poisson fluctuation.
Suggestions

A prediction of tomorrow’s \( L_{\text{tomorrow},+} \) should derive from a prediction of \( W_{\text{tomorrow}} \triangleq \sqrt{L_{\text{tomorrow},+}} \). This should involve \( d(\text{tomorrow}) \).

We suggest (as a first try) an autoregressive model of the form

\[
W_j = \alpha_{d(j)} + \sum_{k=1}^{K} \rho_k (W_{j-k} - \alpha_{d(j-k)}) + \varepsilon_j
\]

We fit such a model to the data from 2002.

- AIC/BIC suggested a choice of \( K=7 \).
- The significant coefficients were those for lags 1 and 7.
- The MSE was reduced to 46.3. This is a valuable reduction by \( R^2 = 57\% \) compared to the model without the AR component.
- The variability in \( W_j \) is still very large.
- Suggestions.
  - Use other covariates or subjective information
  - Use volume in the morning (up to – say - 10am) to help predict volume for the remainder of the day
Service Times
Service Times are (mostly) LogNormal
Log(SerTime) Plot for all times >20

Fit is a Normal(μ=5.2,σ=0.9) density, based on median and interquartile distance of the truncated log(Sertime) distribution.
Here is the plot for the smaller service times

The red curve is the normal density plot from the preceding fit

About 5% of the service times on 7/15/02 were ≤ 20 (ie, Log <3).

Note that the curve doesn’t fit well in this part of the distribution, so the distribution of small service times does NOT follow the lognormal pattern.

CONCLUSION: Maybe Service times here should really be modeled as a mixture of 95% of a lognormal distribution and 5% of some special distribution involving only small times.

To Do: This general pattern works for 7/16 – 18 as well; but with minor – though statistically significant – changes in the parameters. Need to investigate all other days.
Mean Service Times Vary with Time of Day

Plot of Estimated **Mean** Service Time

Method for estimating the mean takes into account the fact that Service Times are (approximately) Lognormal.

(Other days we’ve looked at have qualitatively similar patterns.)