A Deterministic Model of a Service Station (Fluid View)

Primitives

- \(Z(0) \) initial content
- \(\alpha(t) \) input rate
- \(\mu(t) \) potential service rate

\[\begin{align*}
\text{in} & \quad \longrightarrow \quad \text{Delay} \quad \longrightarrow \quad \text{out}
\end{align*} \]

Model: (Think cumulants)

Inflow: \(A(t) = \int_0^t \alpha(u)du, \quad t \geq 0 \);

Potential Outflow: \(M(t) = \int_0^t \mu(u)du, \quad t \geq 0 \).

- We could start with primitives \(A, M \), in which case they need not be continuous; for example, they could be counting processes.

Netflow: \(X(t) = Z(0) + A(t) - M(t), \quad t \geq 0 \).

Introduce \(Y(t) = \) cumulative potential lost during \([0, t]\).

⇒ Outflow: \(D = M - Y \) (A arrivals; D departures)

⇒ Balance:

\[\begin{align*}
Z(t) &= Z(0) + A(t) - D(t) \\
&= Z(0) + A(t) - [M(t) - Y(t)] \\
&= X(t) + Y(t), \quad t \geq 0.
\end{align*} \]

Model

\(Z = X + Y \)

Feasible \(Z \geq 0, \ Y \uparrow 0 \) \(Y(0) = 0 \);

Efficient \(Y \) least (hence, \(Y \) unique);

Existence: \(Y = (-X)^+ \) \(Y = -\underline{X} \), when \(Z(0) = 0 \);

\(\underline{X}(t) = \inf_{0 \leq u \leq t} X(u) \), which is called the lower envelope of \(X \).
“Proof”

Least $Y \uparrow 0$
s.t. $Y \geq -X$

When $Z(0) = 0$:

$Z = X - X$
$X = $ lower envelope.

Equivalent characterization via complementarity: (LCP/DCP)

Y least $\iff ZdY = 0$, i.e. Y increases at t
only when $Z(t) = 0$.

In words: potential lost due to idleness.

Claim (Skorohod) Given $X \in \text{RCLL (Right Continuous Left Limit)}$,

there exists a unique (Y, Z) such that

\[
\begin{align*}
Z &= X + Y, \\
Z &\geq 0, \quad Y \uparrow 0, \\
ZdY &= 0.
\end{align*}
\]

Proof Existence by checking $Y = (\overline{-X})^+ \ (= -X \land 0)$.

Uniqueness by Lyapunov-function argument:

(Note: if minimality is established, then uniqueness is automatic.)

If $(Y_i, Z_i), \ i = 1, 2,$ are two solutions, then consider

\[
\eta = \frac{1}{2}(Y_1 - Y_2)^2.
\]
Assume, for simplicity, continuous \(Y_i \)'s, in which case differentiate:

\[
d\eta = (Y_1 - Y_2)(dY_1 - dY_2) = (Z_1 - Z_2)(dY_1 - dY_2) = -Z_1dY_2 - Z_2dY_1 \leq 0.
\]

Deduce that \(\eta \) decreases, but also

\[
\eta(0) = 0 \Rightarrow \eta \equiv 0 \\
\Rightarrow Y_1 \equiv Y_2.
\]

Outflow
\[
D(t) = M(t) - Y(t) = \int_0^t \delta(u)du, \quad \text{where } \delta(u) = \text{outflow rate},
\]

\[
\Rightarrow Y(t) = \int_0^t [\mu(u) - \delta(u)]du.
\]

In terms of rates: \(dY \geq 0 \) implies \(\delta \leq \mu \).

Now, either
\[
\delta = \mu \quad \text{or} \quad \delta < \mu \Leftrightarrow dY > 0,
\]

\[
\Rightarrow Z = 0 \quad (\text{since } ZdY = 0),
\]

\[
\Rightarrow d(X + Y) = 0 \quad (\text{consider a neighbourhood and differentiate}),
\]

\[
\Rightarrow (\alpha - \mu) + (\mu - \delta) = \alpha - \delta = 0.
\]

Thus (Hall, pg. 190, Def. 6.6),

\[
\delta(t) = \begin{cases}
\mu(t) & \text{when } Z(t) > 0, \\
\alpha(t) & \text{when } Z(t) = 0.
\end{cases}
\]

Note that the above is not a direct definition of \(\delta \), since it uses \(Z \), which is defined in terms of \(\delta \).
How to calculate Delay?

Define

\[W(t) = \text{work-load at time } t \]
\[(= \text{time to process all that is present at time } t) \]
\[= \text{under FCFS, virtual waiting time.} \]

Defining relation for \(W \):

\[D(t + W(t)) = Z(0) + A(t) \]

Hence, \(Z(t + W(t)) = Z(0) + A(t + W(t)) - A(t) \).

MOP’s over a finite horizon \(T \):

Averages

- **Inflow**: \(\bar{\alpha} = \frac{1}{T} \int_0^T \alpha(t) dt; \)
- **Outflow**: \(\bar{\delta} = \frac{1}{T} \int_0^T \delta(t) dt; \)
- **Throughput**: \(\lambda, \text{ defined when } \bar{\alpha} = \bar{\delta} \text{ as their common value.} \)

Queue length (Inventory): \(\bar{Z} = \frac{1}{T} \int_0^T Z(t) dt = \frac{1}{T} \times \text{Area.} \)

Delay: \(\bar{W} = \frac{1}{\lambda(T)} \int_0^T W(t) dA(t) \quad \left(= \frac{\int_0^T W(t) \alpha(t) dt}{\int_0^T \alpha(t) dt} \right). \)

\[\uparrow \text{ Rieman-Stiltjes} \]
Intuition:

- Discrete arrivals ⇒ \(\bar{W} = \frac{1}{A(T)} \sum_{n=1}^{A(T)} W_n \) (as in Hall, Chap. 2);
- Absolutely continuous: \(\alpha(t)\,dt \) arrivals during \((t, t + dt)\), each suffering a delay of \(W(t) \).

Little’s Conservation Law: \(\bar{Z} = \lambda \cdot \bar{W} \).

Cumulative lost potential \(Y(T) \).

Efficiency \(\varepsilon(T) = 1 - \frac{Y(T)}{M(T)} = \)

\[
= \frac{D(T)}{M(T)} \left(\frac{\int_{0}^{T} \delta(t)\,dt}{\int_{0}^{T} \mu(t)\,dt} , \text{when applicable} \right) .
\]

Example \(constant \ rates \quad \alpha(t) \equiv \alpha , \quad \mu(t) \equiv \mu . \)

(linear model)

\[
\begin{array}{c}
\alpha > \mu \\
\alpha = \mu \\
\alpha < \mu \\
\end{array}
\]

overloaded (supercritical) \(\rho > 1 \)
critically loaded (critical) \(\rho = 1 \)
underloaded (subcritical) \(\rho < 1 \)

Definition: \(\rho = \alpha/\mu \) traffic (flow) intensity.

Natural extension: piecewise constant rates, as in National Cranberry (HBS case).

Example \(periodic \ rates \ e.g . \)

(If \(\alpha \) has a period \(T_{\alpha} = 8 \), \(\mu \) has a period \(T_{\mu} = 3 \), take period \(T = T_{\alpha} \cdot T_{\mu} = 24 \).)
Long-run: \[\bar{\alpha} = \frac{1}{T} \int_{0}^{T} \alpha(t)dt; \quad \bar{\mu} = \frac{1}{T} \int_{0}^{T} \mu(t)dt; \]
\[\rho = \bar{\alpha}/\bar{\mu} \text{ (Heyman-Whitt)}. \]

Short-run: Phase-transitions (different from Hall, pg. 189–190, that has stagnant \rightarrow growth \rightarrow decline \rightarrow stagnant).

Short-Run Phase Transitions

Overloaded at \(t \): \(Z(t) > 0; \)
Underloaded \(\delta(t) < \mu(t) \) (excess capacity, \(dY(t) > 0); \)
Critically loaded \(\delta(t) = \mu(t) \) (balanced capacity, \(dY(t) = 0) \).

The analogue of \(\rho \), traffic intensity, is here (assume \(Z(0) = 0) \):

\[\rho(t) = \sup_{0 \leq s \leq t} \frac{\int_{s}^{t} \alpha(u)du}{\int_{s}^{t} \mu(u)du} \begin{cases} > 1 & \text{overloaded} \\ = 1 & \text{critically loaded} \\ < 1 & \text{underloaded} \end{cases} \]
For finer approximations, we must acknowledge more phases, as depicted in the following figure.

Phase transition diagram for the asymptotic regions.
(Massey & Mandelbaum.)

References:

Mathematical Framework

Reflection Mapping \(\rightarrow X - X \wedge 0 \)
(Regulator)
\((X \rightarrow X - X, \text{ when } X(0) = 0)\).

Fundamental:

- Flow analysis (Fluid Models);
- Economics;
- Stochastic Processes;
 - Skorohod (needed cumulant \(Y' \));
 - Queueing Models (later);
- Approximations.

Idea of Approximations: \[Z = f(X), \text{ } f \text{ continuous (Lipshitz)}. \]

Hence, \(X \approx X \) implies \(Z \approx Z = f(X) \)

\(X \approx X \) fluid \(\Rightarrow Z = f(X) \) fluid approximations.

\(X \approx X + \dot{X} \) diffusion \(\Rightarrow \dot{Z} = f(X + \dot{X}) \) diffusion refinements.

Reference: Harrison, Chapter 2 (which covers also finite buffers, and two-node networks).