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Abstract

We present a new generic minimum cross-entropy method, called the semi-
iterative MinxEnt, or simply SME, for rare-event probability estimation, count-
ing, and approximation of the optimal solutions of a broad class of NP-hard
linear integer and combinatorial optimization problems (COP’s).

The main idea of our approach is to associate with each original problem an
auxiliary single-constrained convex MinxEnt program of a special type, which
has a closed-form solution. We prove that the optimal pdf obtained from the
solution of such a specially designed MinxEnt program is a zero variance pdf,
provided the “temperature” parameter is set to minus infinity. In addition
we prove that the parametric pdf based on the product of marginals obtained
from the optimal zero variance pdf coincides with the parametric pdf of the
standard cross-entropy (CE) method. Thus, originally designed at the end of
1990-s as a heuristics for estimation of rare-events and COP’s, CE has strong
connection with MinxEnt, and thus, strong mathematical foundation.

The crucial difference between the proposed SME method and the standard
CE counterparts lies in their simulation-based versions: in the latter we always
require to generate (via Monte Carlo) a sequence of tuples including the
temperature parameter and the parameter vector in the optimal marginal
pdf’s, while in the former we can fix in advance the temperature parameter
(to be set to a large negative number) and then generate (via Monte Carlo)
a sequence of parameter vectors of the optimal marginal pdf’s alone. In
addition, in contrast to CE, neither the elite sample no the rarity parameter
is needed in SME. As result, the proposed SME algorithm becomes simpler,
faster and at least as accurate as the standard CE.

Motivated by the SME method we introduce a new updating rule for the
parameter vector in the parametric pdf of the CE program. We show that the
CE algorithm based on the new updating rule, called the combined CE (CCE),
is at least as fast and accurate as its standard CE and SME counterparts. We
also found numerically that the variance minimization (VM) -based algorithms
are the most robust ones. We, finally, demonstrate numerically that the pro-
posed algorithms, and in particular the CCE one, allows accurate estimation
of counting quantities up to the order of hundred of decision variables and
hundreds of constraints.
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1 Introduction

Let H(x) be a continuous function defined on some closed bounded n-dimensional
domain X . Assume that x∗ is a unique minimum point over X . The following
theorem is due to Pincus [14].

Theorem 1.1 Let H(x) be a real-valued continuous function over closed bounded
n-dimensional domain X . Further assume that there is as a unique minimum point
x∗ over X at which minx H(x) attains (there is no restriction on the number of
local minima). Then the coordinates of x∗

k, k = 1, . . . , n of x∗ are given by

x∗
k = lim

λ→∞

∫
X xk exp(−λH(x))dx∫
X

exp(−λH(x))dx
, k = 1, . . . , n. (1)

The proof of the theorem is based on Laplace’s formula, which for sufficiently
large λ can be written as

∫

X

xk exp(−λH(x))dx ≈ x∗
k exp (−λH(x∗)),

∫

X

exp (−λH(x))dx ≈ exp (−λH(x∗)).

This is due to fact that for large λ the major contribution to the integrals appearing
in (1) comes from a small neighborhood of the minimizer x∗.

Pincus’ theorem holds for discrete optimization as well (assuming |X | <∞). In
this case the integrals should be replaced by relevant sums.

There are many Monte-Carlo methods for evaluating the coordinates of x∗, that
is, for approximating the ratio appearing in (1). Among them is the celebrated
simulated annealing method, which is based on the MCMC (Markov chain Monte
Carlo), also called Metropolis’ sampling procedure. The idea of the method is to
sample from the Boltzmann density

g(x) =
exp (−λH(x))∫

X exp (−λH(x))dx
(2)

without resorting to calculation of the integral (the denumerator). For details see
[22].

It is important to note that in general sampling from the complex multi-dimensional
pdf g(x) is a formidable task. If, however, the function H(x) is separable that is,
can be presented as

H(x) =

n∑

k=1

Hk(xk),

then the pdf g(x) in (2) decomposes as the product of its marginal pdfs, that is, it
can be written as

g(x) =

∏n
k=1 exp (−λHk(xk))∏n

k=1

∫
X

exp (−λHk(xk))dxk
. (3)

Clearly, for a decomposable function H(x) sampling from the one- dimensional
marginal pdfs of g(x) is fast.

Consider application of the simulated annealing method to combinatorial opti-
mization problems (COP’s). As an example, consider TSP with n cities. In this
case [1], simulated annealing runs a Markov chain with (n − 1)! states and H(x)
denotes the length of the tour. As λ → ∞ the stationary distribution of Y will
become a degenerated one, that is, it converges to the optimal solution x∗ (shortest
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tour in the case of TSP). It can be proved [1] that in the case of multiple solutions,
say R solutions, we have that as λ → ∞ the stationary distribution of Y will be
uniform on the set of the R optimal solutions.

The main drawback of simulated annealing is that it is slow and λ, called the
annealing temperature, must be chosen heuristically.

In this work we present a different Monte Carlo method, which we call the
semi-iterative MinxEnt, or simply SME. It is also associated with the Boltzmann
distribution, which is obtained by solving a MinxEnt program of a special type
and is suitable for rare-event probability estimation, counting and approximation
of the optimal solutions of a broad class of NP-hard linear integer and combinatorial
optimization problems (COP’s).

The main idea of our approach is to associate with each original problem an
auxiliary single-constrained convex MinxEnt program of a special type, which has a
closed form solution. We prove that the optimal pdf obtained from the solution of
such specially designed MinxEnt is a zero variance pdf, provided the temperature
parameter is set to minus infinity. In addition, we prove that the parametric pdf
based on the product of marginals obtained from the optimal zero variance pdf
coincide with the parametric pdf of the standard cross-entropy (CE) method. Thus,
originally designed at the end of 1990-s as a heuristics for estimation of rare-events
and COP’s, it follows that CE has strong mathematical foundation because the
proposed SME has such.

The crucial difference between the proposed SME method and CE counterparts
lies in their simulation-based versions: in the latter we always require to generate
(via Monte Carlo) a sequence of tuples including the temperature parameter and
the parameter vector in the optimal marginal pdf’s, while in the former we can fix
in advance the temperature parameter (to be set to a large negative number) and
then generate (via Monte Carlo) a sequence of parameter vectors of the optimal
marginal pdf’s alone. In addition, in contrast to CE, neither the elite sample nor
the rarity parameter is needed in SME. As result, the proposed SME Algorithm
becomes simpler, faster and at least as accurate as the standard CE.

Motivated by the SME method we introduce a new updating rule for the pa-
rameter vector in the parametric pdf of the CE method. We show that the CE
algorithm, based on the new updating rule, called the combined CE (CCE), is at
least as fast and accurate as its standard CE and SME counterparts. We also found
numerically that the variance minimization (VM) -based algorithms are the most
robust ones. We, finally, demonstrate numerically that the proposed algorithms and
in particular the CCE one allows accurate estimation of counting quantities up to
the order of hundred of decision variables and hundreds of constraints.

The rest of our paper is organized as follows. In Section 2 we present some
background on the classic MinxEnt program. Section 3 is our main one. Here
we establish connections between counting, rare-event probability estimation and
MinxEnt, and we present our new MinxEnt method, which involves indicator func-
tions in the MinxEnt programs and is called indicator-based MinxEnt or simply the
IME program. We also discuss the relation of the proposed IME program to the
earlier CE and MinxEnt ones considered in [17], [18] and show that the proposed
program is quite different. In particular we show that the optimal pdf obtained
from the IME program coincides with zero variance importance sampling (IS) pdf,
provided the temperature parameter λ = −∞. This is quite a remarkable result.
In Section 4 we a present our main SME algorithms for counting. In Section 5 we
show how counting of the set of feasible solutions of LIP’s (linear integer programs)
can be performed with our SME algorithm. Motivated by the SME method we
introduce in Section 6 the so-called combined CE (CCE) algorithm, which typically
performs at least as fast and accuraty as its SME counterpart. Section 7 deals
with unconstrained optimization, where a slightly modified version of the main
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SME counting algorithm is introduced. Section 8 introduces several typical LIP’s
and COP’s like the knapsack, TSP, set covering, set partitioning and satisfiability
problem, to which our algorithms are applied in Section 9. Finally, in Section 10
conclusions and some final remarks are given.

2 The Classic MinxEnt Method

The classic MinxEnt program reads as

(P0)

ming D(g, h) = ming

∫
ln g(x)

h(x) g(x)dx = ming Eg

[
ln g(X)

h(X)

]

s.t.
∫

Si(x)g(x) dx = Eg[Si(X)] = bi, i = 1, . . . , m,

∫
g(x)d x = 1.

(4)

Here g and h are n-dimensional joint pdfs, Si(x), i = 1, . . . , m are given functions,
and x is an n-dimensional vector. Here h is assumed to be known. The program (P0)
is called the minimum cross-entropy or simply the MinxEnt program. If the prior
h is constant, then D(g, h) =

∫
g(x) ln g(x) dx+constant, so that the minimization

of D(g, h) in (P0) can be replaced with the maximization of

S(g) = −

∫
g(x) ln g(x) dx = −Eg[ln g(X)], (5)

where S(g) is the Shannon entropy [10]. The corresponding program is called the
Jaynes’ MinxEnt program. Note that the former minimizes the Kullback-Leibler
cross-entropy, while the later maximizes the Shannon entropy [10]. For a nice paper
on the generalization of MinxEnt see [4].

In typical counting and combinatorial optimization problems (COP)’s h is cho-
sen as an n-dimensional pdf with independent uniformly distributed marginals. For
example, while counting the number of satisfiability assignments in a SAT prob-
lem we assume that each component of the n-dimensional random vector X is
distributed Ber(u) with u = 1/2. As for another example, when estimating rare-
events in stochastic models, like queuing models, we assume that h has a fixed pdf.
In particular, in an M/M/1 queue h would be a two-dimensional pdf with inde-
pendent marginals, where the first marginal is the interarival Exp(λ) pdf, while the
second one is the service Exp(µ) pdf.

The MinxEnt program, which under mild conditions [3] presents a convex con-
strained functional optimization problem, can be solved via Lagrange multipliers.
The solution is given by [3]

g(x) =
h(x) exp {−

∑m
i=1 λiSi(x)}

Eh [exp {−
∑m

i=1 λiSi(X)}]
, (6)

where λi, i = 1, . . . , m are obtained from the solution of the following system of
equations

Eh

[
Si(X) exp

{
−
∑m

j=1 λjSj(X)
}]

Eh

[
exp

{∑mj

j=1−λjSj(X)
}] = bi. (7)

Note that g(x) can be written as

g(x) = C(λ1, . . . , λm)h(x) exp

{
−

m∑

i=1

λiSi(x)

}
, (8)
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where

C−1(λ1, . . . , λm) = Eh

[
exp

{
−

m∑

i=1

λiSi(X)

}]
(9)

is the normalization constant. Note also that g(x) presents a density function, that
is, g(x) ≥ 0.

In the particular case where each Si(X), X = (X1, . . . , Xn) is coordinate-wise
separable, that is,

Si(X) =

n∑

k=1

Sik(Xk), i = 1, . . . , m (10)

and the components Xk, k = 1, . . . , n of the random vector X = (X1, . . . , Xn)
distributed h(x) are independent, the joint pdf g(x) in (6) reduces to the product
of marginal pdfs. In such case we say that g(x) is decomposable.

In particular, the k-th component of g(x) can be written as

gk(xk) =
hk(x) exp {−

∑m
i=1 λiSik(xk)}

Ehk
[exp {−

∑m
i=1 λiSik(Xk)}]

, k = 1, . . . , n. (11)

Remark 2.1 It is well known [5] that the optimal solution of the single-dimensional
single-constrained MinxEnt program

ming D(g, h) = ming Eg

[
ln g(X)

h(X)

]

s.t. Eg[S(X)] = b,

∫
g(x)dx = 1

(12)

coincides with the celebrated optimal exponential change of measure (ECM). Note
that typically in a multi-dimensional ECM one twists each component separately,
using possibly different twisting parameters. In contrast, the optimal solution to
the MinxEnt program is parameterized by a single-dimensional parameter λ, so for
the multi dimensional case ECM differs from MinxEnt.

Example 2.1 (Die Tossing) To obtain better insight into the MinxEnt program
program, consider a particular case of (12) associated with die tossing. We assume
S(x) = x and h(x) = h(x; u) is a discrete distribution over the 6 faces of the die,
where u = (u1, . . . , u6) denotes the parameter vector. In this case it is readily seen
the the functional program (12) leads to the following parametric one

minp D(p|u) = minp

∑6
k=1 pk ln pk

uk

s.t.
∑6

k=1 kpk = b,

∑6
k=1 pk = 1.

(13)

The optimal parameter vector p∗ = (p1, . . . , p6), derived from the solution of
(13) can be written component wise as

pk =
uk exp {−kλ}∑6
r=1 ur exp {−rλ}

=
Eu[I{X=k} exp {−Xλ}]

Eu[exp {−Xλ}]
, k = 1, . . . , 6, (14)

where λ is derived from the numerical solution of
∑6

k=1 kuk exp {−kλ}
∑6

k=1 uk exp {−kλ}
= b. (15)

7



Table 1, which is an exact replica of Table 4.1 of [10], presents λ, p and the
entropy S(p) as functions of b for a fair die, that is, with the prior (u1 = 1

6 , . . . , u6 =
1
6 ). The table is self-explanatory.

Table 1: λ, p and S(p) as function of b for a fair die.

b λ p1 p2 p3 p4 p5 p6 S(p)

1.0 ∞ 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000
1.5 1.0870 0.6637 0.2238 0.0755 0.0255 0.0086 0.0029 0.95356
2.0 0.6296 0.4781 0.2548 0.1357 0.0723 0.0385 0.0205 1.36724
2.5 0.3710 0.3475 0.2398 0.1654 0.1142 0.0788 0.0544 1.61373
3.0 0.1746 0.2468 0.2072 0.1740 0.1461 0.1227 0.1031 1.74843
3.5 0.0000 0.1666 0.1666 0.1666 0.1666 0.1666 0.1666 1.79176
4.0 -0.1746 0.1031 0.1227 0.1461 0.1740 0.2072 0.2468 1.74843
4.5 -0.3710 0.0544 0.0788 0.1142 0.1654 0.2398 0.3475 1.61373
5.0 -0.6296 0.0205 0.0385 0.0723 0.1357 0.2548 0.4781 1.36724
5.5 -1.0870 0.0029 0.0086 0.0255 0.0755 0.2238 0.6637 0.95356
6.0 −∞ 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.00000

Note that

• p(b = 3.5) = u = (1
6 , . . . , 1

6 ) and, thus g = h.

• S(p) is strictly concave in b and the maximal entropy maxb S(p) = S(3.5) =
1.79176.

• For the extreme values of b, that is, for b = 6 and b = 1, the corresponding
optimal solutions are p∗ = (0, 0, . . . , 1) and p∗ = (1, 0, . . . , 0) respectively,
that is, the pdf g becomes degenerated. For these cases

1. The entropy is S(p) = 0, and thus there is no uncertainty (for both
degenerated vectors, p = (0, 0, . . . , 1) and p = (1, 0, . . . , 0)).

2. For p = (0, 0, . . . , 1) and p = (1, 0, . . . , 0) we have that λ = −∞ and
λ =∞, respectively. This important observation is in the spirit of Pincus
[14] Theorem 1.1 and will play an important role below.

3. It can also be readily shown that p is degenerated regardless of the prior
u.

The above observations for the die example can be readily extended to the case
where instead of S(x) = x one considers S(x) =

∑r
k=1 akIx=k with r > 1 and with

arbitrary ak’s.

Remark 2.2 Taking into account that MaxEnt (with the objective function S(g),
see (5)) can be viewed as a particular case of MinxEnt with h(x) =const, we can
rewrite the basic MinxEnt formulas (6) and (7) as

g(x) =
exp {−

∑m
i=1 λiSi(x)}∑

x′ [exp {−
∑m

i=1 Si(x)λi}]
, (16)

where λi, i = 1, . . . , m are obtained from the solution of the following system of
equations ∑

x Si(x) exp
{
−
∑m

j=1 λjSj(x)
}

∑
x exp

{
−λ
∑mj

j=1 Sj(x)
} = bi. (17)
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We extend next the MinxEnt program (P0) to both equality and inequality
constraints, that is, we consider the following program

(P00)

ming D(g, h) = ming

∫
ln g(x)

h(x) g(x)dx = ming Eg

[
ln g(X)

h(X)

]

s.t.
∫

Si(x)g(x) dx = Eg[Si(X)] = bi, i = 1, . . . , m1,

∫
Sj(x)g(x) dx = Eg[Sj(X)] ≥ bj , j = m1 + 1, . . . , m1 + m2,

∫
g(x)d x = 1.

(18)
In this case applying the Kuhn-Tucker conditions to the program (P00) we read-

ily obtain that g(x) remains the same as in (6), while λ = (λ0, λ1, . . . , λm), m =
m1 + m2 are found from the solution of the following convex program

maxλ (−
∑m

i=0 λibi − Eh[exp {−
∑m

i=0 λiSi(X)}])

s.t. λj ≥ 0, ∀j = m1 + 1, . . . , m1 + m2.
(19)

3 Rare Events, Counting and MinxEnt

Here we establish the connection between rare-event probabilities, MinxEnt and
counting. In particular we discuss how to employ MinxEnt for estimating the fol-
lowing rare-event probability

ℓ = Eu

[
I{S(X)≥b}

]
, (20)

were S(X) is quite an arbitrary sample function, X ∼ f(x; u), where f(x; u) is a
fixed distribution parametrized by a vector u, and b is large number, so ℓ is a very
small probability.

We can estimate ℓ using the following non-parametric IS estimator

ℓ̂ =
1

N

N∑

k=1

[
I{S(Xk)≥b}

f(Xk; u)

g(Xk)

]
, (21)

or using a parametric one

ℓ̂ =
1

N

N∑

k=1

[
I{S(Xk)≥b}

f(Xk; u)

f(Xk; p)

]
, (22)

respectively. Here X1, . . . , XN in (21) and (22) is a random sample from g(x) and
from f(x; p), respectively. Note that p is a parameter vector, that is, typically
different from u. At this point it is crucial to note that in order to obtain a low-
variance estimator ℓ̂ we shall use below g(x) and p obtained from the MinxEnt
program.

If not stated otherwise we assume below that f(x; u) is the uniform distribution.
Since any counting quantity can be derived using the probability (20) (see [18]), we
shall use the same IS pdfs g(x) and f(x; p) given in (21) and (22) to estimate
the counting quantity, denoted by |X ∗|. It is readily seen [18] that using g(x) and
f(x; p), the estimator of |X ∗| can be written as

|̂X ∗| =
1

N

N∑

k=1

I{S(Xk)≥b}
1

g(Xk)
, (23)

9



and as

|̂X ∗| =
1

N

N∑

k=1

I{S(Xk)≥b}
1

f(Xk; p)
, (24)

respectively, provided f(x; u) is a uniform distribution. Here again X1, . . . , XN is
a random sample either from f(x; p) or from g.

To establish the connection between MinxEnt and rare-events note (see [17]) that
while estimating rare events probabilities using (21) and (22) as IS pdfs g(x) and
f(x; p), it is common to take the ones obtained from the solution of the following
single constrained MinxEnt program

ming D(g, h) = ming

∫
ln g(x)

h(x) g(x)dx = ming Eg

[
ln g(X)

h(X)

]

s.t. Eg[S(X)] = b,

∫
g(x)d x = 1.

(25)

In other words, one typically takes the optimal MinxEnt pdf g(x) derived from
(25) as the importance sampling pdf in (21). Alternatively, if g(x) is a complex
pdf, (which is typically the case) one can approximate g(x) by the product of its
marginal pdf’s gi(xi) = fi(xi, pi), i = 1, . . . , n [17], that is use (22) instead of (21),
where f(x, p) is a parametric pdf, that differs from the prior pdf h(x) = f(x, u)
only in p. For an alternative approach of using the product of marginal pdf’s of
g(x) for rare event estimation see [8].

We shall explain now how to derive p from the optimal pdf g(x). If not stated
otherwise we assume for simplicity that X = (X1, . . . , Xn) is a binary random
vector with probabilities u = (u1, . . . , un) and independent components. In other
words X ∼ Ber(u). By summing g(x) over all xk, k 6= j, we obtain the marginal pdf
for its j-th component and we approximate g(x) by the product of these marginals.
In particular, let g(x) be the optimal MinxEnt pdf derived from (25), and h(x) =
f(x; u) the prior pdf, then under g we have Xj ∼ Ber(pj), with

pj = Eg[Xj ] =

∑
x xj h(x)e−λS(x)

Eu[e−λS(X)]
,

so that

pj =
Eu[Xj exp {−S(X)λ}]

Eu[exp {−S(X)λ}]
, j = 1, . . . , n (26)

with λ satisfying (7) (for m = 1).
It is important to note that formula (26) is similar to the corresponding CE one

[21]

pj =
Eu[Xj I{S(X)≥b}]

Eu[I{S(X)≥b}]
, (27)

with one main difference: the indicator function I{S(X)≥b} in the CE formula is
replaced by exp {−λS(X)}.

Remark 3.1 (Exponential Families) Formula (26) can be generalized such that
it holds for any exponential family parameterized by the mean, in the same way that
the CE formula (27) holds for such families. More specifically, suppose under prior
h(x) = f(x; u) the random vector X = (X1, . . . , Xn) has independent components
and that each Xi is distributed according to some 1-parameter exponential family
fi(xi; ui) and is parameterized by its mean — thus, Eh[Xi] = Eu[Xi] = ui, with
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u = (u1, . . . , un). The expectation of Xj under the MinxEnt solution is (in the
continuous case)

Eg[Xj ] =

∫
X

xj h(x) e−λS(x) dx

Eu[e−λS(X)]
=

Eu

[
Xj e−λ S(X)

]

Eu

[
e−λ S(X)

] , j = 1, . . . , n , (28)

Let v = (v1, . . . , vn) be another parameter vector for the exponential family. Then
the above analysis suggests to carry out the importance sampling using vj equal to
Eg[Xj ] given in (28), so that

vj =
Eu

[
Xj e−λ S(X)

]

Eu

[
e−λ S(X)

] , j = 1, . . . , n , (29)

The diagram connecting rare-events, MinxEnt and counting can be represented as

{x ∈ R
n : S(x) ≥ b} −→ EuI[{S(X) ≥ b}] −→ MinxEnt (26) −→ Count as (24).

(30)
Note that the pj ’s in (26) and (27) were extensively used in [17] for rare-event

estimation and COP’s while updating the parameter vector p using simulation. In
this paper we shall use a different approach for deriving g(x) and the associated
parameter vector p.

3.1 The New Indicator-Based MinxEnt Method

Consider counting on the set

X ∗ = {x ∈ R
n : Si(x) ≥ bi, j = 1, . . . , m}, (31)

where Si(x), i = 1, . . . , m are arbitrary functions. In this case we can associate
with (31) the following multiple- event probability

ℓ = Pu

{
m⋂

i=1

[Si(X) ≥ bi]

}
= Eu

[
m∏

i=1

I{Si(X)≥bi}

]
. (32)

Note that (32) extends (20) in the sense that it involves simultaneously an inter-
section of m events {Si(X) ≥ bi}, that is, multiple events rather than a single one
{S(X) ≥ b}. Note also that some of the constraints may be equality ones, that is,
{Si(X) = bi}. Note finally that (32) has some interesting applications in rare-event
simulation. For example, in a queueing model one might be interested in estimating
the probability of the simultaneous occurrence of two events, {S1(X) ≥ b1} and
{S2(X) ≥ b2}, where the first is associated with buffer overflow (the number of
customers S1 is at least b1), and the second is associated with the sojourn time (the
waiting time of the customers S2 in the queuing system is at least b2).

We assume that each individual event {Si(X) ≥ bi}, i = 1, . . . , m, is not
rare, that is each probability Pu{Si(X) ≥ bi} is not a rare-event probability, say
Pu{Si(X) ≥ bi} ≥ 10−4, but their intersection forms a rare-event probability ℓ.
Similar to the single-event case in (20) we are interested in efficient estimation of ℓ
defined in (32). As before, we shall use the IS estimators (22) and (24). The cru-
cial issue is how to approximate efficiently g(x) and in particular how to estimate
efficiently the parameter vector p in f(x, p).

The main idea of the new approach is to design an IS pdf g(x) such that under
g(x) all constraints {Si(x) ≥ bi, i = 1, . . . , m} are fulfilled. This is equivalent of
saying that the rare-event probability ℓ in (32) becomes certain under g(x), that is,

Eg

[
m∏

i=1

I{Si(X)≥bi}

]
= 1. (33)
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In other words, (33) states that under such an ideal IS pdf g(x) all m indicators
must be equal to unity with probability 1. This can also be written as

Pg

{(
m∑

i=1

Ci(X)

)
= m

}
= Eg

[
I{C(X)=m}

]
= 1, (34)

where

C(X) =

m∑

i=1

Ci(X) =

m∑

i=1

I{Si(X)≥bi}, (35)

and Ci(X) = I{Si(X)≥bi}. Similar to (33), formula (34) states that under g(x) the
probability of the sum of m indicator random variables Ci(X) being equal to m,
(m is the number of constraints) must be equal 1.

Lets pose the following questions:

• Does such an ideal IS g(x) exist in the frame work of MinxEnt?

• If so, is it uniformly distributed over the desired set X ∗, or, in other words,
is g(x) a zero-variance IS pdf ?

We shall show next that the answer to both questions is affirmative.
It follows from the above that in order for g(x) to fulfill all the constraints

{Si(x) ≥ bi, i = 1, . . . , m} we need to consider an MinxEnt program with the
following single constraint

Eg

(
m∑

i=1

Ci(X)

)
= m. (36)

That is, similar to (25) we define the following single-constrained MinxEnt program

ming D(g, h) = ming

∫
ln g(x)

h(x) g(x)dx = ming Eg

[
ln g(X)

h(X)

]

s.t. Eg[
∑m

i=1 Ci(X)] = m

∫
g(x)d x = 1.

(37)

In other words, in order to estimate the rare-event probability ℓ given in (32) and
to count the cordinality of the set (31) we shall use the single-constrained MinxEnt
program (37). The solution of (37), which is based on the sum of the indicator
random variables Ci(X) is

g(x) =
h(x, u) exp {−λ

∑m
i=1 Ci(x)}

Eu [exp {−
∑m

i=1 λCi(X)}]
, (38)

where λ is obtained from the solution of the following equation

Eu

[∑m
i=1 Ci(X) exp

{
−λ
∑m

j=1 Cj(X)
}]

Eu

[
exp

{
−λ
∑m

j=1 Cj(X)
}] = m. (39)

It is important to note that we can declare that the set {Si(x) ≥ bi, i = 1, . . . , m}
is empty, provided (39) has no solution.

It is crucial to note that the classic multi-constrained MinxEnt program (4)
involves expectations of Si(X), while the proposed single-constrained one (37) is
based on the expectations of the indicators of Si(X), so the name indicator MinxEnt
program or simply IME program.

12



For m = 1 the IME program (37) reduces to

ming D(g, h) = ming Eg

[
ln g(X)

h(X)

]

s.t. Eg[C(X)] = 1

∫
g(x)d x = 1,

(40)

where C(X) = I{S(X)≥b}.
Observe also that in this case the single-constrained programs (40) and (25) do

not coincide: in the former case we use an expectation of the indicator of S(X),
that is E{I{S(X)≥b}}, while in the later case we use an expectation of S(X), that
is, E{S(X)}. We shall treat the program (40) in more details in Section 7.

The following Lemmas 3.1-3.3 provide affirmative answers to the questions posed
above.

Lemma 3.1 The optimal λ of the IME program (37) satisfying (39) is λ = −∞.

Proof The proof is given for a discrete domain X . For a continuous domain we
replace the summations by integrations.

To prove that the optimal λ of the IME program (37) is λ = −∞ we proceed as
follows. Denoting, as before, C(x) =

∑m
i=1 Ci(x) ∈ {0, 1, . . . , m} we can write (39)

as

limλ→−∞
Eu[

Pm
i=1 Ci(X) exp{−λ

Pm
j=1 Cj(X)}]

Eu[exp{−λ
P

m
j=1 Cj(X)}]

= limλ→−∞

∑
x∈X h(x;u)C(x)e−λC(x)

(∑
x∈X h(x;u)e−λC(x)

)−1

= limλ→−∞



∑

x s.t. C(x)=m h(x;u) ·m · e−λm +
∑

x s.t. C(x)<m h(x;u)C(x)e−λ

<m︷︸︸︷
C(x)




×



∑

x s.t. C(x)=m h(x;u)e−λm +
∑

x s.t. C(x)<m h(x;u)e−λ

<m︷︸︸︷
C(x)




−1

.

The right sum in each of the two factors above is negligible with respect to its
corresponding left sum. Therefore, the above expression equals

limλ→−∞

(∑
x s.t. C(x)=m h(x;u) ·m · e−λm

)(∑
x s.t. C(x)=m h(x;u)e−λm

)−1

= limλ→−∞
Pu(C(X)=m)·m·e−λm

Pu(C(X)=m)e−λm = m.

2

The following lemma answers our second question.

Lemma 3.2 The optimal pdf g(x) in (38) corresponds to a uniform pdf over the
set {x ∈ R

n : Si(x) ≥ bi, i = 1, . . . , m}.

Proof The proof is given for a discrete domain X . For a continuous domain we
replace the summations by integrations. By Lemma 3.1, λ→ −∞ and, denoting as
before C(x) =

∑m
i=1 Ci(x) ∈ {0, 1, . . . , m}, we can write (38) as

13



g(x) = limλ→−∞ h(x;u)e−λC(x) ·
(∑

x′∈X h(x′;u)e−λC(x′)
)−1

= limλ→−∞ h(x;u)e−λC(x)

·



∑

x′ s.t. C(x′)=m h(x′;u)e−λm +
∑

x′ s.t. C(x′)<m h(x′;u)e−λ

<m︷ ︸︸ ︷
C(x′)




−1

.

The right-hand side sum is negligible with respect to the left one. Therefore,

g(x) = limλ→−∞ h(x;u)e−λC(x) ·
(∑

x′ s.t. C(x′)=m h(x′;u)e−λm
)−1

=

limλ→−∞
h(x;u)e−λC(x)

Pu(C(X)=m)e−λm = limλ→−∞
h(x;u)

Pu(C(X)=m)e−λ(m−C(x′)) =

{
0 , C(x) ∈ {0, 1, . . . , m− 1};
h(x;u)/Pu (C(X) = m) , C(x) = m.

Now, substituting |̂X ∗| = |X |ℓ̂ into the IS estimator,

ℓ̂ =
1

N

N∑

k=1

I{C(Xk)=m}
h(Xk;u)

g(Xk)
, Xk ∼ g,

and taking into account that Pg (C(X) = m) = 1, we finally obtain

ℓ̂ =
1

N

N∑

k=1

h(Xk;u)

h(Xk;u)/Pu (C(X) = m)
= Pu (C(X) = m) ,

which is a constant. 2

Lemma 3.2 automatically implies that the optimal g(x) is a zero-variance IS.
Thus, solving the MinxEnt program (37) we obtained a zero variance IS sampling
pdf g(x, λ) with λ = −∞. But this is exactly what Pincus’ Theorem 1.1 requires.

Lemma 3.3 For λ = −∞ the optimal IME pdf g(x) in (38) coincides with the
classic IS zero-variance pdf.

Proof We will show that for λ = −∞ the optimal IME pdf g(x) in (38), that
is,

g(x) =
h(x, u)e−λC(X)

Eu

[
e−λC(X)

] ,

coincides with the classic zero variance pdf

g∗(x) =
h(x, u)I{C(x)=m}

Eu

[
I{C(X)=m}

] ,

where C(x) =
∑m

i=1 Ci(x).
Our proof assumes a discrete domain X . For a continuous domain replace the

summations by integrations.
Noting that

I{C(x)=m} = I{x∈X ∗}, x ∈ X

14



we have

g(x) , limλ→−∞
h(x,u)e−λC(X)

Eu[e−λC(X)]
= h(x, u) limλ→−∞

e−λC(x)

|X |−1
P

x∈X e−λC(X)

= h(x, u) limλ→−∞
Ix∈X∗e−λm+Ix 6∈X∗e−λ

<m︷ ︸︸ ︷
C(X)

|X |−1

0
BBBB@

P
x∈X∗ e−λm+

P
x6∈X∗ e−λ

<m︷ ︸︸ ︷
C(X)

1
CCCCA

.

The right-hand side terms in the numerator and denominator are negligible with
respect to their corresponding left-hand side ones. Therefore,

g(x) = h(x, u) limλ→−∞
Ix∈X∗e−λm

|X |−1
P

x∈X∗ e−λm = h(x,u)Ix∈X∗

|X |−1
P

x∈X∗ 1

= h(x,u)Ix∈X∗

|X |−1
P

x∈X I{x∈X∗}
=

h(x,u)I{C(x)=m}

Eu[I{X∈X∗}]
, g∗(x).

2

It is important to note that in contrast to the optimal pdf g(x) in the IME
program (37), the optimal pdf g(x) in the classic MinxEnt program (4) is not zero-
variance, (it leads only to variance reduction).

Observe again that generating samples from a multidimensional Boltzmann pdf,
like g(x) in (38) is a difficult task. The only available MCMC (Markov Chain Monte
Carlo) algorithm [22] is very slow, in particular when the “temperature” parameter
λ is low. Recently a dynamic programming approach has been introduced in [6]
to sample efficiently from the Boltzmann pdfs. The method of [6] for efficient
generation from the pdf (38) will be implemented some where else.

Similar to [17] we shall approximate g(x) in (38) by the product of its marginal
pdf’s gi(xi) = fi(xi, pi), i = 1, . . . , n, that is we shall write the components pi, i =
1, . . . , n of the optimal vector p as

pi =
Eu [Xi exp {−λ

∑m
i=1 Ci(X)}]

Eu [exp {−
∑m

i=1 λCi(X)}]
, i = 1, . . . , n, (41)

which coincides with (26) up to the notations. Note that when each component of
X is an arbitrary r-point discrete random variable then (41) extends to

pij =
Eu [IXi=j exp {−λ

∑m
i=1 Ci(X)}]

Eu [exp {−
∑m

i=1 λCi(X)}]
, i = 1, . . . , n; j = 1, . . . , r. (42)

Remark 3.2 (The Standard CE Method) Similar to (41) (see also (27)) we
can define the following CE updating formula

pj =
Eu[XjI{

P
m
i=1 Ci(X)=m}]

Eu[I{
P

m
i=1 Ci(X)=m}]

. (43)

In summary, to estimate efficiently ℓ in (34) and the associated counting quantity
|X ∗|, we shall use again the IS estimator (22), where p in f(x; p) is given in (41)
and it is obtained from the solution of the IME program (37).

The diagram explaining the connection between the rare-events, IME and count-
ing is similar to (30) and it can be presented as

{Si(x) ≥ bi, i = 1, . . . , m} −→ Eu [
mY

i=1

I{Si(X)≥bi}] −→ IME (37) −→ Count via (24).

(44)
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Example 3.1 (Counting With Two Symmetric Dice) Consider counting the num-
ber of feasible solutions of the following constraints system associated with rolling two
symmetric dice

10x1 + x2 ≤ 40

2x2 − x1 ≥ b

xk ∈ {1, . . . , 6}, k = 1, 2.

(45)

Figure 1 depicts the feasible region defined by the two constraints (45) with b = 2.

Figure 1: The region (45) with b = 2

It is readily seen that the constraints (45) define 14 feasible points.
Table 2 presents C1(x1, x2) = I{10x1+x2≤40} as function of x1 and x2.

Table 2: C1(x1, x2) = I{10x1+x2≤40} as function of x1 and x2

x1\x2 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

Table 3 presents C2(x1, x2, b) = I{2x2−x1≥b} as function of x1 and x2 for different
values of b.
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Table 3: C2(x1, x2, b) as function of x1 and x2 for different values of b

x1\x2 b = 1 1 2 3 4 5 6 x1\x2 b = 2 1 2 3 4 5 6
1 1 1 1 1 1 1 1 0 1 1 1 1 1
2 0 1 1 1 1 1 2 0 1 1 1 1 1
3 0 1 1 1 1 1 3 0 0 1 1 1 1
4 0 0 1 1 1 1 4 0 0 1 1 1 1
5 0 0 1 1 1 1 5 0 0 0 1 1 1
6 0 0 0 1 1 1 6 0 0 0 1 1 1

x1\x2 b = 3 1 2 3 4 5 6 x1\x2 b = 4 1 2 3 4 5 6
1 0 1 1 1 1 1 1 0 0 1 1 1 1
2 0 0 1 1 1 1 2 0 0 1 1 1 1
3 0 0 1 1 1 1 3 0 0 0 1 1 1
4 0 0 0 1 1 1 4 0 0 0 1 1 1
5 0 0 0 1 1 1 5 0 0 0 0 1 1
6 0 0 0 0 1 1 6 0 0 0 0 1 1

x1\x2 b = 5 1 2 3 4 5 6 x1\x2 b = 6 1 2 3 4 5 6
1 0 0 1 1 1 1 1 0 0 0 1 1 1
2 0 0 0 1 1 1 2 0 0 0 1 1 1
3 0 0 0 1 1 1 3 0 0 0 0 1 1
4 0 0 0 0 1 1 4 0 0 0 0 1 1
5 0 0 0 0 1 1 5 0 0 0 0 0 1
6 0 0 0 0 0 1 6 0 0 0 0 0 1

By Lemma 3.1 λ = −∞ for all values of b. Also, by Lemma 3.2 the optimal pdf g(x)
is uniformly distributed over the 14 points (see Figure 1) defined by the constraints (45).

Table 4 presents the optimal g(x1, x2) as function of x1 and x2.

Table 4: The optimal g(x1, x2) as function of x1 and x2 for b = 2

x1\x2 1 2 3 4 5 6

1 0 1/14 1/14 1/14 1/14 1/14
2 0 1/14 1/14 1/14 1/14 1/14
3 0 0 1/14 1/14 1/14 1/14
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

We next calculate g1(x1)g2(x2). Before that we calculate the components pij , i =
1, 2; j = 1, . . . , 6 of the vector p according to (42), which for our toy example reduces to

pij =
Eu

ˆ
IXi=j exp

˘
−

P2
i=1 λCi(X)

¯˜

Eu

ˆ
exp

˘
−

P2
i=1 λCi(X)

¯˜ . (46)

Table 5 presents the vector p, S(p)and|X ∗| along with the estimator

d|X ∗| =
1

N

NX

k=1

I{C1(Xk)+C2(Xk)=2}
1

g(Xk, p)
(47)

for different values of values of b.
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Table 5: p, S(p), |X ∗| and |̂X ∗| for different values of b

b
˛̨
X∗ ˛̨

p1,1 p1,2 p1,3 p1,4 p1,5 p1,6 p2,1 p2,2 p2,3 p2,4 p2,5 p2,6 S(p) |̂X∗|

1 16 6
16

5
16

5
16

0 0 0 1
16

3
16

3
16

3
16

3
16

3
16

2.69 16.06

2 14 5
14

5
14

4
14

0 0 0 0 2
14

3
14

3
14

3
14

3
14

2.69 13.96

3 13 3
13

4
13

4
13

0 0 0 0 1
13

3
13

3
13

3
13

3
13

2.64 12.97

4 11 4
11

4
11

3
11

0 0 0 0 0 2
11

3
11

3
11

3
11

2.46 11.01

5 10 4
10

3
10

3
10

0 0 0 0 0 1
10

3
10

3
10

3
10

2.40 10.04

6 8 3
8

3
8

2
8

0 0 0 0 0 0 2
8

3
8

3
8

2.16 8.00

Based on the results of Table 5, Table 6 and Figure 2 presents the component-wise
product of the marginal distributions of g(x), that is, g1(x1)g2(x2) = f1(x1, p1)f2(x2, p2)
for b = 2.

Table 6: The IS pdf g1(x1)g2(x2) as function of x1 and x2 for b = 2.

x1\x2 1 2 3 4 5 6

1 0 10/142 15/142 15/142 15/142 15/142

2 0 10/142 15/142 15/142 15/142 15/142

3 0 8/142 12/142 12/142 12/142 12/142

4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

Figure 2: The IS pdf g1(x1)g2(x2) for b = 2.
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It is readily seen that in contrast to the joint optimal uniform pdf g(x) defined over
the set of 14 points, the product of its associated marginal distributions g1(x1)g2(x2) is
defined over the set of 15 points, that is, it contains an extra point x32, which is outside
the feasible region (45) with probability p32 > 0. It follows from Table 5 that using the
product of its optimal marginal distributions g1(x1)g2(x2) instead of the optimal (zero

variance) one g(x) we still get a low variance estimator d|X ∗| of |X ∗|.

Example 3.2 Counting 0-1 Tables with Fixed Margins
The set Ax = b is given as

Pn

i=1 xij = b
(1)
j , j = 1, . . . , m

Pm

j=1 xij = b
(2)
i , i = 1, . . . , n

Xij ∈ {0, 1}, ∀i, j

(48)

We shall approximate |X ∗| using both the IME and SME approaches for m = n = 3
with different values of the the vector (b(1), b(2)). For both IME and SME approaches
we shall approximate g(x) using the (i) product of its marginal pdfs and (ii) pair wise
dependence.

The following table presents such a summary of the results.

Table 7: The vector p for several values of the vector (b(1), b(2)).

b(1) b(2) p11 p12 p13 p21 p22 p23 p31 p32 p33 S(p) |̂X∗|

(0,0,0) (0,0,0) 0 0 0 0 0 0 0 0 0 0 1
(0,0,1) (1,0,0) 0 0 1 0 0 0 0 0 0 0 1
(0,2,2) (2,2,0) 0 1 1 0 1 1 0 0 0 0 1
(1,1,2) (2,1,1) 0.6 0.6 0.8 0.2 0.2 0.6 0.2 0.2 0.6 5.19 5.07
(1,1,3) (2,2,1) 0.5 0.5 1 0.5 0.5 1 0 0 1 2.77 1.97
(2,2,2) (3,1,2) 1 1 1 0.33 0.33 0.33 0.66 0. 66 0.66 3.82 3.015
(3,3,3) (3,3,3) 1 1 1 1 1 1 1 1 1 0 1

Note that for the extreme values of the vectors b(1) and b(2), namely for b(1) =
b(2) = (0, 0, 0) and b(1) = b(2) = (3, 3, 3), we obtain degenerated solutions (all
components of p are either zeros or all ones, respectively). In this case, we also

that have S(p) = 0 and |̂X ∗| = 1, as expected. Similar, for b(1) = (1, 1, 3) and

b(2) = (2, 2, 1) we obtain two feasible solutions with the corresponding values of
X: X1 = (1, 0, 0, 0, 1, 0, 1, 1, 1) and X2 = (0, 1, 0, 1, 0, 0, 1, 1, 1), respectively. In

this case the estimate of |X ∗| (based on a sample N = 1000) is |̂X ∗| = 1.9712 and

similarly for the other values of (b(1), b(2)).

Consider finally the extreme case where m and n are even, b
(1)
j = n

2 , j = 1, . . . , m,

and b
(2)
i = m

2 , i = 1, . . . , n. In this case, clearly, the optimal IME vector p =
(1/2, . . . , 1/2), that is, it coincides with the initial one p0 and thus the IME based
on f(x, p) is useless.

Theorem 3.1 For λ = −∞ the optimal parameter vector p in (41) of the marginal
pdf’s of the optimal g(x) in (38) coincides with the p in (43) for the CE method.

Proof The proof is very similar to Lemma 3.3 and is omitted.
2

Theorem 3.1 is crucial for the foundations of the CE method. Indeed, designed
originally in [16] as a heuristics for rare-event estimation and COP’s, Theorem
3.1 states that CE has strong connections with the IME program (37) and, thus,
has strong mathematical foundation. The main reason is that the the optimal
parametric pdf f(x, p) = f(x, p, λ) (with p in (41) and λ = −∞) and the CE
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pdf (with p as in (43)) obtained heuristically from the solution of the following
cross-entropy program

min
p

Eg[ln
g(X)

f(X, p)
]

are the same, provided g(x) is the zero variance IS pdf, that is, (see [21])

g(x) =
h(x, u)I{C(x)=m}

Eu

[
I{X∈X ∗}

] .

The crucial difference between the proposed SME method and its CE coun-
terparts lies in their simulation-based versions: in the latter we always require to
generate a sequence of tuples {pt, mt}, while in the former we can fix in advance
the temperature parameter λ (to be set a large negative number) and then generate
a sequence of parameter vectors {pt} based on (41) alone. In addition, in contrast
to CE, neither the elite sample no the rarity parameter are involved in SME. As
result, the proposed SME Algorithm becomes typically simpler, faster and at least
as accurate as the standard CE based on (43).

Remark 3.3 It is not difficult to prove that Lemmas 3.1-3.3 still remain valid if
we split the constraint

∑m
i=1 Ci(X) = m of the program (37) into several ones. In

particular the two-constrained version of the program (37) can be written as

ming D(g, h) = ming

∫
ln g(x)

h(x) g(x)dx = ming Eg

[
ln g(X)

h(X)

]

s.t. Eg[
∑m1

i=1 Ci(X)] = m1

Eg[
∑m

j=1+m1
Cj(X)] = m2

∫
g(x)d x = 1,

(49)

where m = m1 + m2. In this case it is easy to prove that both λ1 and λ2 of the
optimal zero variance pdf

g(x) =
h(x, u) exp

{
−λ1

∑m1

i=1 Ci(x)− λ2

∑m
j=m1+1 Cj(x)

}

Eu

[
exp

{
−λ1

∑m1

i=1 Ci(X)− λ2

∑m
j=m1+1 Cj(X)

}] (50)

are equal to−∞ and similarly for an arbitrary splitting of the constraint
∑m

i=1 Ci(X) =
m into k, k = 1, . . . , m groups.

4 The Semi-Iterative Minx-Ent (SME) Counting
Algorithm

Here we present the semi-iterative Minx-Ent (SME) counting algorithm for rare-
events and counting the number of feasible solutions on the set X ∗ defined by

Si(x) = bi, i = 1, . . . , m1,

Sj(x) ≤ bj , j = m1 + 1, . . . , m.
(51)

We call our method, the semi-iterative MinxEnt (SME), to distinguish it from
the iterative cross-entropy (CE) for the following reasons. As we shall see below

1. CE

20



• Generates iteratively a sequence of tuples {p̂t, m̂t}, where p̂t and m̂t,
denote the estimates of the optimal parameter vector in the parametric
pdf f(x, p) and the approximation of m at the t-th iteration, respectively.

• Involves a rarity parameter ρ and elite sampling, while generating the
sequence {p̂t, m̂t}.

2. SME

• Generates only a sequence of vectors {pt}, while fixing the temperature
parameter λ in advance (to be a large negative number).

• Neither rarity parameter ρ, no elite samples are involved in SME.

For this reasons SME is much simpler than CE and MinxEnt and, as we shall
see below from our numerical results, it is faster and at least as accurate as its
counterparts CE and MinxEnt.

It is also important to keep in mind that the SME method is based on the
MinxEnt program (37), which combines the multiple (deterministic) constraints
(51) into a single (stochastic) one given as Eg[

∑m
i=1 Ci(X)] = m.

If not stated otherwise we shall assume that g(x) is approximated by the product
of its marginal pdf’s gi(xi) = fi(xi, pi), i = 1, . . . , n, where the components pi, i =
1, . . . , n of the optimal vector p are given in (41). As soon as an estimate of p is
derived we estimate ℓ and |X ∗| using the IS estimator (22) and (24), respectively.

Before proceeding with the SME algorithm we introduce in Section 4.1 the so-
called iterative IME algorithms to distinquish it from our main SME Algorithm
for counting. Note that in the iterative IME we are purposely ignoring the fact
that λ = −∞ and, thus we generate a sequence of triplets {p̂t, m̂t, λ̂t}. Here we
also show the similarity of the IME algorithm and and the standard CE one. In
section 4.2 we introduce the SME algorithm, where, as mentioned, we take into
consideration the fact that λ = −∞. By doing so, SME generates a sequence of
vectors {p̂t} instead of the sequence of triplets {p̂t, m̂t, λ̂t}, and is thus faster.

4.1 Standard CE and the Iterative IME

In the standard CE and the iterative IME approaches one uses a multi-level ap-
proach, that is, one generates simultaneously a sequence of the parameter vector pt

of the parametric pdf’s f(x, pt) and levels {mt}. Starting with f(x, p0) = h(x, u),
that is, taking the prior h(x, u) = f(x, p0), one

1. Updates mt as
mt = Egt−1 [C(X) | C(X) ≥ qt] ,

where qt is the (1 − ρ)-quantile of C(X) under gt and as before C(X) =∑m
i=1 Ci(X).

2. Updates gt as the solution to the above MinxEnt program for level mt, rather
than m.

The updating formula for mt is based on the constraint Eg[C(X)] = m in the
MinxEnt program. However, instead of simply updating as mt = Egt−1 [C(X)], we
take the expectation of C(X) with respect to gt−1 conditional upon C(X) being
greater than its (1 − ρ) quantile, here denoted as qt. In contrast, in the standard
CE method the level mt is simply updated as qt.

Note that in IME each gt is completely determined by its multiplier, say λt,
which is the solution to (39) with mt instead of m. In practice both mt and λt have

to be replaced with their respective stochastic versions m̂t and λ̂t, respectively.

21



Specifically, mt can be estimated from a random sample X1, . . . , XN of gt−1 as the
average of the Ne = ⌈ρN⌉ elite sample performances:

m̂t =

∑N
i=N−Ne+1 C(i)

Ne
, (52)

where C(i) denotes the i-th order-statistics of the sequence C(X1), . . . , C(XN ). The
standard way of updating the parameter λt via simulation is to solve with respect
to λ, the stochastic counterpart of (39), that is

N∑

k=1

C(Xk) exp{−λ̂t C(Xk)} W (Xk; u, p̂t−1)

N∑

k=1

exp{−λ̂t C(Xk)} W (Xk; u, p̂t−1)

= m̂t, (53)

where

W (x) =
f(x, u)

f(x, p̂t−1)

is the likelihood ratio.
Similarly, the component of the the vector pt are updated as

p̂t,j =

N∑

k=1

Xkj exp{−λ̂t C(Xk)} W (Xk; u, p̂t−1)

N∑

k=1

exp{−λ̂t C(Xk)} W (Xk; u, p̂t−1)

. (54)

In CE the updating of p is performed in analogy to (54) according to

p̂t,j =

N∑

k=1

Xkj I{C(Xk)≥ bmt} W (Xk; u, p̂t−1)

N∑

k=1

I{C(Xk)≥ bmt} W (Xk; u, p̂t−1)

. (55)

Note that since the prior pdf f(x, u) is uniform it is desirable to replace for
computational convenience W (Xk; u, p̂t−1) by 1

f(Xk;bpt−1)
.

Below we present the iterative IME algorithm for counting based on the sequence
of triplets {p̂t, m̂t, λ̂t} and the standard CE one based on the sequence of tuples
{p̂t, m̂t}. As mentioned, in Section 4.2 we present our main SME Algorithm for
counting by generating a sequence of vectors {p̂t} alone instead of the sequence of

triplets {p̂t, m̂t, λ̂t}.

Algorithm 4.1 (Iterative IME Algorithm for Counting)

1. Define p̂0 = u. Set t = 0 (iteration = level counter).

2. t ← t + 1. Generate a sample X1, . . . , XN from the density f(x; p̂t−1) and

compute m̂t and λ̂t according to (52) and (53).

3. Use the same sample X1, . . . , XN and update pt according to (54). Denote
the solution by p̂t.
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4. Smooth out the vector p̂t according to

pt = αp̂t + (1− α)p̂t−1, (56)

where α, (0 < α < 1) is called the smoothing parameter.

5. If m̂t < m reiterate from step 2. Else proceed with step 6.

6. Reiterate steps 2.-4. for 3-4 more iterations. Estimate the counting quantity
|X ∗| as

|̂X ∗| =
1

N

N∑

k=1

I{C(Xk)=m}
1

f(Xk; p̂t)
. (57)

Algorithm 4.2 (Standard CE Algorithm for Counting)

1. Define p̂0 = u. Set t = 0 (iteration = level counter).

2. t ← t + 1. Generate a sample X1, . . . , XN from the density f(x; p̂t−1) and
compute m̂t according to (52).

3. Use the same sample X1, . . . , XN and update pt according to (55). Denote
the solution by p̂t.

4. Smooth out the vector p̂t according to (56).

5. If m̂t < m reiterate from step 2. Else proceed with step 6.

6. Reiterate steps 2.-4. for 3-4 more iterations. Estimate the counting quantity
|X ∗| according to (57).

4.2 The Main SME Counting Algorithm

Since in SME λ is fixed (λ is a large negative number), the components of p can be
updated in analogy to (54) according to the following formula

p̂t,j =

N∑

k=1

Xkj exp{−λ C(Xk)} W (Xk; u, p̂t−1)

N∑

k=1

exp{−λ C(Xk)} W (Xk; u, p̂t−1)

. (58)

For application purposes we not nly set λ to a large negative number, like λ =
−100, but we also use in (62) instead of C(Xk), its so-called normalized value

C(n)(Xk) =
C(Xk)

maxk=1,...,N C(Xk)
. (59)

Using (59) the resulting updating of p̂t can be written as

p̂t,j =

N∑

k=1

Xkj exp{−λ C(n)(Xk)} W (Xk; u, p̂t−1)

N∑

k=1

exp{−λ C(n)(Xk)} W (Xk; u, p̂t−1)

, (60)

The main reason for using C(n)(X) instead of C(X) is for convenience only; to
make sure that λ C(n)(Xk) is a large negative number, say λ C(n)(Xk) = −100,
when C(n)(Xk) = 1.
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Algorithm 4.3 (SME Algorithm for Counting)

1. Define p̂0 = u. Set λ = M , say M = −100. Set t = 0 (iteration = level
counter).

2. t ← t + 1. Generate a sample X1, . . . , XN from the density f(x; p̂t−1) and
compute p̂t according to (60).

3. Smooth out the vector p̂t according to (56).

4. If C(X) < m, reiterate from step 2. Else proceed with step 5.

5. Reiterate steps 2.-3. for 2-4 more iterations. Estimate the counting quantity
|X ∗| as

|̂X ∗| =
1

N

N∑

k=1

I{C(Xk)=m}
1

f(Xk; p̂t)
. (61)

Our numerical results of Section 9 clearly show that the SME Algorithm 4.3 is
quite robust with respect to λ, provided λ is a large negative number, say−50 ≥ λ ≥
−1000. To see this let λ = −100 and assume for simplicity that C(n)(Xk)} obtains
values from the set {1, 0.9, . . . , 0.1}. In this case, the updating of the parameter
vector p according to (60) will be based on the following exponential sequence
{exp(100), exp(90), . . . , exp(10)}. Clearly, the dominanting term is exp(100), while
the remaining ones are negligiable. Similar conclusions hold for some other large
negative values of λ, like −50 ≥ λ ≥ −1000.

Remark 4.1 (Convergence of Algorithm 4.3). Since for fixed λ Algorithm 4.3
updates only the single parameter vector p̂, the convergence and the speed of the
convergence of p̂ to the true optimal parameter vector p∗ with the components

pj =
EuXj exp{−λ C(n)(X)}

Eu exp{−λ C(n)(X)}
(62)

follows from Theorems A1 and A2 of [20].

Remark 4.2 (The Method of Moments). Since h(x, u) is a uniform pdf, as
an alternative to the original Shannon’s entropy maximization program (4), (5) one
can consider the following one

ming

∫
{S(x)− Eg[S(X)]}2 g(x)dx = ming Varg[S(X)].

s.t.
∫

S(x)g(x) dx = Eg[S(X)] = b,

∫
g(x) dx = 1.

(63)

The nonparametric problem (63) is known as the problem of moments [23] and
it can be also written as

ming Eg[S
2(X)].

s.t. Eg[S(X)] = b,

∫
g(x) dx = 1.

(64)

This is because Varg[S(X)] = Eg[S
2(X)]− (Eg[S(X)])2 and Eg[S(X)] = b.
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It is also known that the minimum of the program (64) is attained at a proba-
bility distribution supported on a set of two points [23]. That is, the above problem
is equivalent to

minx,y∈M, p∈[0,1] S
2(x)p + S2(y)(1 − p)

s.t. S(x)p + S(y)(1 − p) = b,
(65)

where M is the support of the distribution of X . The dual of the above problem
can be written as a linear semi-infinite programming problem.

Note that from equation S(x)p + S(y)(1 − p) = b we have that p = (b −
S(y))/(S(x)− S(y)), provided that this solution in [0, 1]. If it is not in [0, 1], then
the point (x, y) is infeasible. Substituting this into (65) we obtain the following
problem

minx,y∈M [S(x) + S(y)]b− S(x)S(y)

s.t. 0 ≤ (b− S(y))/(S(x)− S(y)) ≤ 1.
(66)

This problem should be typically solved numerically. Moreover, the theory states
[23] that if the (original) problem has a solution, then it is attained at an atomic
measure. Such atomic measure does not have density. It may happen, of course,
that the problem is infeasible, that is, has no solution.

4.3 Extensions

Note that depending on whether the constraint Eg[
∑m

i=1 Ci(X)] = m is satisfied or
not (see (37)) the SME Algorithm (4.3) always puts a corresponding weight 1 or 0
regardless of how far Si(x) is from bi, i = 1, . . . , m. To provide more flexibility to
IME we can use a more sensitive “distance” between Si(x) and bi.

In particular, if the set X ∗ is given by

1. The system of equalities

X ∗ = {x ∈ R
n : Si(x) = bi, i = 1, . . . , m}, (67)

one can consider instead of Eg[C(X)] = Eg[
∑m

i=1 Ci(X)] = m the following
constraint

Eg (C(X)) = Eg

(
m∑

i=1

Ci(X)

)
= Eg

(
m∑

i=1

|Si(X)− bi|
r

)
= 0, (68)

where r ≥ 1 say r = 2.

2. The system of inequalities

X ∗ = {x ∈ R
n :

n∑

k=1

aikxk ≤ bi, i = 1, . . . , m}, (69)

one can consider the following constraint

Eg (C(X)) = Eg

(
m∑

i=1

Ci(X)

)
= Eg

(
m∑

i=1

[max{0, [Si(X)− bi]
r}]

)
= 0,

(70)
where r is odd, say, r = 1, 3, . . ..

Clearly, if one has both equality and inequality constraints, (that is, as defined
in (51)), then one has to combine both (68) and (70).
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Note also that since g(x) is not available in (68) and (70), in practice we check
the fulfilment of the sample versions of Ep{C(X)} = 0 rather than fulfilment of
Eg[C(X)] = 0. Here as usual p means that the expectation is taken under f(x, p)
and the sample versions of Ep[C(X)] = 0 can be written as

C =
1

N

N∑

k=1

C(Xk) = 0. (71)

We shall call the MinxEnt program (37) with the single constraint Eg[
∑m

i=1 Ci(X)] =
m replaced by the combined version of (68) and (70), the weighted MinxEnt (WME),
program to distinguish it from the original IME program (37). In short, the WME
program coinsides with the IME one (37), provided its constraint involving indicator
functions are replaced by the ones involving the weight functions based on (68) and
(70). Also, since the IME program can be viewed as particular case of the WME
one, if not otherwise stated we shall use the WME one. It follows from the above
that while using the WME program, the steps 3. and 4. of Algorithm 4.3 should
be modified respecively as

1. If C(X) > 0, reiterate from step 2. Else proceed with step 5.

2. Reiterate steps 2.-3. for 2-4 more iterations. Estimate the counting quantity
|X ∗| as

|̂X ∗| =
1

N

N∑

k=1

I{C(Xk)=0}

1

f(Xk; p̂t)
. (72)

In sumarry, while referring below to Algorithm 4.3, we shall always mean using
C(X) based on (68) and (70), rather than C(X) based on in the indicator, that
is, defined as C(X)] =

∑m
i=1 Ci(X). Note again that we use in Algorithm 4.3 the

normalized function C(X) (59), that is,

C(n)(Xk) =
C(Xk)

maxk=1,...,N C(Xk)
,

rather than C(X) itself.
We finally remark that one can readily prove that Lemmas 3.1-3.3 hold for the

WME program as well. For example, Lemma 3.3 for C(X) =
∑m

i=1[max{0, [Si(X)−
bi]

r}] (see (70)) reads as

Lemma 4.1 For λ = −∞ the optimal WME pdf g(x) in (38) coincides with the
IS zero variance pdf

g∗(x) =
h(x, u)I{

P
m
i=1[max{0,[Si(X)−bi]r}]=0}

Eu

[
I{X∈X ∗}

] .

4.4 Introducing Dependence Between the Components of X

In some applications the above counting algorithms based on the product of the
marginals of g(x), that is, on f(x, p), might have poor performance. To overcome
this difficulty one can introduce dependence between the components of the random
vector X. In particular, one can find the associated k-dimensional marginal pdfs
gi1,...,ik

(xi1 , . . . , xik
), k ≤ n and the corresponding conditional ones

gi1,...,ik
(xik
|xi1 , . . . , xik−1

) =
gi1,...,ik

(xi1 , . . . , xik
)

gi1,...,ik−1
(xi1 , . . . , xik−1

)
, k = 1, . . . , n
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from the optimal n-dimensional joint pdf g(x). For example, having the two-
dimensional marginals g(xi1 , xi2) one can use instead of (41) the following MinxEnt
updating

pij =
Eu [XiXj exp {−λ

∑m
i=1 Ci(X)}]

Eu [exp {−
∑m

i=1 λCi(X)}]
, i, j = 1, . . . , n (i 6= j). (73)

In short, using gi1,...,ik
(xi1 , . . . , xik

), 2 ≤ k ≤ n one might obtain alternative
and more accurate IS estimators of ℓ and |X ∗| given in (22) and (24).

Note also that by analogy to (73) we can define the pair-wise updating in ICE
as

pij =
Eu[XiXjI{

P
m
i=1 Ci(X)=m}]

Eu[I{
P

m
i=1 Ci(X)=m}]

, i, j = 1, . . . , n (i 6= j). (74)

If not stated otherwise we shall consider in this paper with the following trun-
cated version

h
(k)
tr (x) = gi1(xi1)gi2|i1(xi2 |xi1) · · · gij |i1,...,ij−1

(xij
|xi1 , . . . , xij−1 ) · · ·

gin|in−k+1,...,in−1
(xin
|xin−k+1

, . . . , xin−1)

(75)

of the true optimal pdf

g(x) ≡ h(n)(x) = gi1(xi1 )gi2|i1(xi2 |xi1 ) · · · gin|i1,...,in−1
(xin
|xi1 , . . . , xin−1). (76)

Note that for k = 2 formula (75) reduces to the following “ Markovian” type pdf

h
(2)
tr (x) = gi1(xi1 )gi2|i1(xi2 |xi1) · · · gin|in−1

(xin
|xin−1), (77)

which will be implemented in our counting algorithms in parallel to the main case,

which is based on the independence of marginal pdfs h
(1)
tr (x) = f(x, p) of g(x).

5 SME for Counting the Number of Feasible So-

lutions in an Integer Program

An integer program with both equality and inequality constraints reads as

min c′x,

s.t.
∑n

k=1 aikxk = bi, i = 1, . . . , m1,

∑n
k=1 ajkxk ≥ bj , j = m1 + 1, . . . , m1 + m2,

x ≥ 0, xk integer ∀k = 1, . . . , n.

(78)

where c and x are n-dimensional vector.
Here we shall present a slightly modified version of our generic counting Algo-

rithm 4.3, which can count efficiently the number of feasible solutions on the set
containing both equality and inequality constraints defined in (78), that is, on the
set

∑n
k=1 aikxk = bi, i = 1, . . . , m1,

∑n
k=1 ajkxk ≥ bj , j = m1 + 1, . . . , m1 + m2,

x ≥ 0, xk integer ∀k = 1, . . . , n.

(79)
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Our modification of Algorithm 4.3 takes into account the additivity properties
of the functions Si(x) =

∑n
k=1 aikxk in (79).

To proceed with the modification we need to modify the m terms Ci(X) in (36),
that is,

Eg

{
m∑

i=1

Ci(X)

}
= m

as follows. Here the first m1 terms Ci(X)’s (out of the total of m = m1 +m2 terms)
are defined as

Ci(X) = I{
P

n
k=1 aikXk=bi}, i = 1, . . . , m1, (80)

while the remaining m2 ones are defined as

Ci(X) = I{
P

n
k=1 aikXk≥bi}, i = m1 + 1, . . . , m1 + m2. (81)

Since for integer problems Si(X) equals to Si(X) =
∑n

k=1 aikXk we can apply
here the results of the previous section. In particular,

• We associate a separate indicator Ci(X) in the MinxEnt program (37) to each
constraint in (78).

• In order to count the number |X ∗| of feasible solutions of the program (78),
that is, on the set (79) we associate with it the following rare-event probability

ℓ = Pu{X ∈ X
∗} = Eu




m1∏

i=1

I(
P

n
k=1 aikXk=bi)

m1+m2∏

j=m1+1

I(
P

n
k=1 ajkXk≥bj)


 .

(82)

• To estimate ℓ we apply the IS formula (24), where the optimal parameter
vector p is updated according to the SME method given in (59) or according
to the ICE method given in (43). We shall use p derived from SME. Recall
again that we use in Algorithm 4.3 C(X) based on (68) and (70) rather than
the one based on the indicator defined as C(X) =

∑m
i=1 Ci(X), since we found

that Algorithm 4.3 based on the former (weighted) function C(X) produces
more accurate results than on the latter indicator function.

Below we present calculations for the weighted function C(X) in case of linear
constraints, that is, assuming that Si(x) =

∑n
k=1 aikxk. In this case formulas (68)

and (70) reduce to

Eg (C(X)) = Eg

(
m∑

i=1

Ci(X)

)
= Eg

(
m∑

i=1

∣∣∣∣∣
n∑

k=1

aikXk − bi

∣∣∣∣∣

r)
= 0, (83)

and

Eg (C(X)) = Eg

(
m∑

i=1

Ci(X)

)
= Eg

(
m∑

i=1

[
max

{
0,

[
bi −

n∑

k=1

aikXk

]r}])
= 0,

(84)
respectively. Note that in (83) and (84) r should be even and odd, respectively.

Also, when the aik’s are different from 0’s and 1’s it is advisable to use instead
of [

n∑

k=1

aikXk − bi

]r

, i = 1, . . . , m
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the following normalized value

[
n∑

k=1

αikXk − βi

]r

, i = 1, . . . , m, (85)

where αik = aik

maxk |aik|
and βi = bi

maxk |aik|
.

At this end note that for large n the estimators (53) and (54) are typically
unstable because of the likelihood ratio term W . To overcome this difficulty we
shall present alternative ones based on the notion of depth-r updating of p for
block-separable function [19].

5.1 Depth-r updating for block-separable function using Minx-
Ent

We start with the following

Example 5.1 Consider a block-separable function C(x) of the form

C(x) =
n−1∑

j=1

Cj(xj , xj+1),

where as before all Cj(xj , xj+1)’s are indicator functions.
Suppose we want to find p2 using the deterministic IME. Consider first the case

where C3 ≡ 0. Define J = {1, 2, 3} and J̄ = {4, . . . , n}. Let us denote by xJ the
vector with components {xj , j ∈ J}, and similar for xJ̄ . We can now write C(x) as

C(x) = CJ(xJ ) + CJ̄ (xJ̄), (86)

with CJ(xJ) = C1(x1, x2) + C2(x2, x3) and CJ̄ (xJ̄) =
∑n−1

j=3 Cj(xj , xj+1) being
independent. In this case, using (41) we can update the component pj , j = 2 of p

as

pj =
Eu [Xj exp {−λ (CJ(XJ ) + CJ̄ (X J̄))}]

Eu [exp {−λ (CJ(XJ) + CJ̄(X J̄ ))}]

=
EuJ

[Xj exp {−λ CJ(XJ )}]

EuJ
[exp {−λ CJ(XJ)}]

.

(87)

Suppose for a moment that C3 does not vanish, so that CJ(XJ ) and CJ̄(X J̄ )
are dependent. Then, obviously, (87) is not valid any more. Nevertheless, for block-
separable functions this formula can still be used as an approximation to the true
updating formula (41). The advantage of pj based on (87) is a greatly reduced
variance of the estimator (24) as compared to the CMC.

Remark 5.1 (Depth-r Updating) We explain now the notion of depth-r updat-
ing by considering again the block-separable function C(x) = C1(x1, x2)+C2(x2, x3)+
· · ·+ Cn−1(xn−1, xn). To update pj via deterministic IME we need to identify the
index set Jj = {k : xk is in the same block as xj}. For example, J2 = {1, 2, 3}, and
J3 = {2, 3, 4}. Let J

(2)
2 = ∪k∈J2Jk be the set of indices that are in the same block as

at least one of the elements in J2. Thus, in this example J
(2)
2 = {1, 2, 3, 4}. Instead

of updating p2 via J = J2, one could take J = J
(2)
2 instead. We call this depth-2

updating. By similar reasoning one can define depth-3, depth-4, etc. updating. For
example, the depth-4 index set for p2 is J

(4)
2 = {1, 2, 3, 4, 5, 6}.
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With this in mind we can estimate the vector pt by analogy to (60) (see also
(87)) as

p̂t,j =

N∑

k=1

Xkj exp{−λ C(n)(X
(r)
kJ )} W

(r)
J (X

(r)
kJ ; u, p̂t−1)

N∑

k=1

exp{−λ C(n)(X
(r)
kJ )} W

(r)
J (X

(r)
kJ ; u, p̂t−1)

, (88)

where W
(r)
J is the likelihood ratio based on depth-r, which should be selected in

advance similar to (60), C(n) is defined in (59) and λ is fixed. Note that for full
depth we have W (Xk; u, p̂t−1).

The main draw-back of the standard CE for counting is that because of the
indicator I{C(Xk)≥ bmt}, one needs to use in CE the entire (high-dimensional) likeli-
hood ratio term W instead of the depth-r alternative (as IME does in (88)), while
updating p according to (55). For more details see [19].

Our extensive numerical results indicate that, although depth-1 introduces a
little bias, while estimating p, the variance reduction, as compared to CMC, is
quite substantial. It is not difficult to check that for the weight functions (see (83))

Ci(X) = (
n∑

k=1

aikXk − bi)
r

(suitable for counting problems with equality constraints) depth-1 produces an un-
biased estimator, provided r = 2.

If not stated otherwise, we shall use below in SME the depth-1 updating (88).
In other words, we shall use the SME counting Algorithm 4.3, provided the updating
of p is performed according to (88) rather than according to (60) as in the original
Algorithm 4.3.

6 Combining CE with SME

Motivated by SME we shall present now alternative to the standard CE algorithm,
which combines the features of both CE and SME. It is called the combined CE
(CCE).

To motivate CCE we shall first introduce a modification of MCE, which is based
on the elite sampling. Let as before m̂t, (m̂t ≤ m) denotes the ρ% elite value of
C(Xk) =

∑m
i=1 Ci(Xk), k = 1, . . . , N obtained at the t-iteration.

1. Define Ĉ(Xk) = C(Xk), if C(Xk) ≥ m̂t; and Ĉ(Xk) = 0, otherwise.

2. Define Ĉi(Xk) = Ci(Xk), if C(Xk) ≥ m̂t; and Ĉi(Xk) = 0, otherwise.

In short, we set each Ĉi(Xk) either to Ci(Xk) or to 0, depending on whether or
not C(Xk) belongs to the elite sampling.

Let us replace now the values C(n)(Xk) in (60) by their elite counterparts

Ĉ(n)(Xk), where in analgy to (59) we define

Ĉ(n)(Xk) =
Ĉ(Xk)

maxk=1,...,N C(Xk)
. (89)

It is readily seen that by replacing in (60) C(n)(Xk) with Ĉ(n)(Xk) the updating of
p will almost remain the same. The main reason is that λ is a very large negative
number and that the updating is performed mainly based on the maximum (elite)

value of C(n)(Xk). Clearly, if λ would be finite, or instead of e−λ bC(n)(X) we could
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use a different (say, slowly changing) function of Ĉ(X), then the elite sample would
matter. This is exactly what we are going to do next. In particular, we define the
following updating rule

p̂t,j =

N∑

k=1

Xkj Ĉ(Xk)W (Xk, p̂t−1)

N∑

k=1

Ĉ(Xk) W (Xk, p̂t−1)

, (90)

which combines both (55) and (60) (CE and SME). Note that in contrast to SME,
the updating (90) contains elite sampling; but in contrast to CE it contains no
indicators. It is called combined CE (CCE) updating.

Similarly, since no indicators are involved in (90) we can use here, by analogy
to (88), the depth-r updating. To do so we can first write (90) as

p̂t,j =

N∑

k=1

Xkj

m∑

i=1

Ĉi(Xk) W (Xk, p̂t−1)

N∑

k=1

m∑

i=1

Ĉi(Xk) W (Xk, p̂t−1)

(91)

and then manipulate with the Ĉi(Xk)’s similar as we did in (88) with Ĉi(Xk)’s.
Note that the CCE updating (91) is based on the following CE program

max
p

N∑

k=1

m∑

i=1

Ĉi(Xk) W (Xk, p̂t−1) ln f(Xk, p). (92)

The combined CE (CCE) Algorithm below differs from the standard CE Algo-
rithm 4.2 only in updating the vector p, namely instead of the updating (55) we
use the updating (91), while all other data remaining the same.

Algorithm 6.1 (CCE Algorithm for Counting)

1. Find the components of the vector π = (π1, . . . , πn). Define p̂0 = u. Set t = 1
(iteration = level counter).

2. Generate a sample X1, . . . , XN from the density f(x; p̂t−1) and compute m̂t

according to (52).

3. Use the same sample X1, . . . , XN and update pt according to (91). Denote
the solution by p̂t.

4. Smooth out the vector p̂t according to (56).

5. If m̂t < m, set t = t + 1 and reiterate from step 2. Else proceed with step 6.

6. Reiterate steps 2.-4. for 3-4 more iterations. Estimate the counting quantity
|X ∗| according to (57).

7 SME for Unconstrained Optimization, Single Event

Probabilities and Counting

In this section we apply of Algorithm 4.3 to single-event probability estimation, that
is, to estimation of ℓ given in (20), and to an associated unconstrained combinatorial
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optimization problem. In particular, we shall associate the rare-event probability
estimation and optimization problems with the MinxEnt program (40), provided
the second constraint is ommited. Note that in this case the parameter b must be
updated iteratively using elite sampling and thus in contrast to SME where only
a sequence of vectors {p̂t, } is generated, here we must generated a sequence of

tuples {p̂t, b̂t}. Also, since the program (40) is based on the indicator function,
and not on the weighted functions, we shall use the original name for the proposed
algorithm below for unconstrained optimization and counting, that is, we will call
it the IME Algorithm. We show that the IME algorithm can handle efficiently
rare events, counting and combinatorial optimization, like max-cut and TSP while
imploying the particular case of the MinxEnt (40). We shall compare numerically
the performance of the IME algoritm with its well know counterparts, CE, VM
(variance minimization) and MinxEnt [17] in Section 9.

Note that many counting and optimization problem can be often treated using
the MinxEnt programs (37) either in the framework of m = 1 or of m > 1 (both
are single-constrained MinxEnt programs). Take, for example, the TSP. It can be
treated either in the framework of program (40) or (37). In the former case TSP
is formulated as an unconstrained COP [21], while in the latter as the following
constrained one.

min
∑n

i=1

∑n
j=1 cijxij

s.t.
∑

i, i6=j aijxij = 1, j = 1, . . . , n

∑
j, j 6=i aijxij = 1, i = 1, . . . , n

∑
i∈K

∑
j∈K aijxij ≤ |K| − 1, 2 ≤ |K| ≤ n− 1, ∀K ⊂ {1, . . . , n}

xij ∈ {0, 1}, ∀i, j, i 6= j

(93)

Note that if the cities i and j are connected, then aij = 1; and aij = 0, otherwise.
Note also that the constraint

∑

i∈K

∑

j∈K

aijxij ≤ |K| − 1, 2 ≤ |K| ≤ n− 1, ∀K ⊂ {1, . . . , n}

can be written equivalently as
∑

i∈K

∑

j /∈K

aijxij ≥ 1, ∀K ⊂ {1, . . . , n}, K 6= φ.

Here K is a non-empty set of the cities 1, . . . , n. Note that there are n(n − 1)
0-1 variables in the program (93). To make sure that all variables xii will be 0 we
set very large values for each cii, say we set each cii = n maxi,j cij .

Note also that the problem of counting Hamiltonian cycles can be viewed as a
particular case of TSP with the elements cij ’s in (93) being ether 1’s or infinities,
depending on whether the cities are connected or not. Taking into account that in
a Hamiltonian cycle the length of a complete tour (if any) is n, we can set b = n.

At this end recall that

1. The standard MinxEnt [17] is based on program (25), while the IME on pro-
gram (40).

2. The programs (40) and (25) are different in the sense that in the former we
require that the expectation of the indicator E{I{S(X)≥b}} = 1, while for the
latter we require that the expectation E{S(X)} ≥ b.
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3. The parameter vector p in MinxEnt is updated according to (26) where λ is
obtained from (7), while IME according to (41), provided m = 1.

4. The crucial difference between the two methods is that in the standard Minx-
Ent a sequence of the triplets {pt, bt, λt} is generated [17], while in IME only
a sequence of tuples {pt, bt, } is generated, while λ is fixed and equal to a large
negative number.

To motivate the IME program (41) consider again the die rolling example.

Example 7.1 (The Die Rolling Example Using Program (41)) Table 8
presents data similar to Table 1 for the die rolling example using the MinxEnt
program (40) with S(X) = X . In particular it presents λ, p and the entropy S(p)
as functions of b for a fair die with the indicator of X , while calculating ℓ = P(X ≥ b)
using (40). One can see that from the comparison of Table 8 and Table 1 that the
entropy S(p) in the latter is smaller than in the former, which is based on the
MinxEnt program (25).

Table 8: λ, p and S(p) as function of b for a fair die while calculating ℓ = P(X ≥ b)

b p1 p2 p3 p4 p5 p6 S(p)

1.0 0.1666 0.1666 0.1666 0.1666 0.1666 0.1666 1.7917
2.0 0 0.2 0.2 0.2 0.2 0.2 1.6094
3.0 0 0 0.25 0.25 0.25 0.25 1.3863
3.5 0 0 0 0.33 0.33 0.33 1.0485
4.0 0 0 0 0.33 0.33 0.33 1.0485
5.0 0 0 0 0 0.5 0.5 0.6931
6.0 0 0 0 0 0 1 0

The Unconstrained Case: IME for Optimization

Consider the following non-smooth (continuous or discrete) unconstrained optimiza-
tion program.

max
x∈Rn

S(x).

Denote by b∗, the optimal function value.
In this case the IME program becomes

ming D(g, h) = ming Eg

[
ln g(X)

h(X)

]

s.t. Eg{I{S(X)≤b}} = 1

∫
g(x)dx = 1,

(94)

The corresponding updating of the component of the the vector p̂t can be written
as

p̂t,j =

N∑

k=1

Xkj exp{−λI{S(Xk)≤bbt}

N∑

k=1

exp{−λI{S(Xk)≤bbt}

, (95)

where λ is a big negative number.

Algorithm 7.1 (IME Unconstrained Optimization Algorithm)
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1. Define p̂0 = u, say chose, f(x, u) uniformly distributed over X . Set λ to a
big negative number, say λ = −100. Set, t = 1 (iteration = level counter).

2. Generate a sample X1, . . . , XN from the density f(x; p̂t−1) and compute the

elite sampling value b̂t of (X1), . . . , S(XN ).

3. Use the same sample X1, . . . , XN and compute p̂t, according to (95).

4. Smooth out the vector p̂t according to (56).

5. If the stopping criterion is met, stop; otherwise, set t = t + 1 and return to
Step 2.

As a stopping criterion one can use for example: if for some t ≥ d, say d = 5,

b̂t−1,(N) = b̂t,(N) = · · · = b̂t−d,(N) (96)

then stop.

IME for Single-Event Probability Estimation and Counting

The IME algorithm for single event event probability estimation (see (20)) combines
both the original counting Algorithm (4.3) and the optimization Algorithm 7.1.
In particular, in order to obtain the single event probability estimation algorithm
from Algorithm 7.1 we only need to add LR (likelihood ratio) terms into (95),
while updating p̂t, and finally estimate |X ∗| according to (57). The final rare-event
estimator of ℓ can be written as

ℓ̂ =
1

N

N∑

k=1

I{S(Xk)≥b}
f(Xk; u)

f(Xk; p̂T )
. (97)

Our numerical results show that for rare-events and counting (the unconstrained
case), IME performs similar to its standard CE counterpart.

Example 7.2 Internet Security The nternet security problem reads as: find
two primes, provided we are given a large integer b known to be a product of these
primes.

We can write the given number b in the binary system with n+1-bit integers as

b = α0 + 2α1 + · · ·+ 2nαn.

The problem reads as: find binary xi, yj , i, j = 0, 1, . . . , n such that
∑

i,j 2i+jxiyj = (
∑

i 2ixi)(
∑

j 2jyj) = b

xi ∈ {0, 1}, yi ∈ {0, 1}, ∀i, j = 0, 1, . . . , n.
(98)

Note that

• The optimal MinxEnt and IME pdf’s are

g(x, y) =
h(x, y, u) exp

{
−(
∑

i 2ixi)(
∑

k 2kyk)λ
}

Eu exp {−(
∑

i 2iXi)(
∑

k 2kYk)λ}
, j = 1, . . . , n. (99)

and

g(x, y) =
h(x, y, u) exp

{
−I{(

P
i
2ixi)(

P
j
2jyj)=b}λ

}

Eu[exp
{
−I{(

P
i 2iXi)(

P
j 2jYj)=b}λ

}
]

, j = 1, . . . , n, (100)

respectively.
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• For prime numbers the MinxEnt should deliver 2 symmetric solutions: one as
(
∑

i 2ixi) and (
∑

j 2jyj); and the other as (
∑

j 2jyj) and (
∑

i 2ixi). For non
prime numbers MinxEnt should have more than 2 solutions.

• The problem (98) can be formulated for any basis, say for a decimal rather
than binary one.

• To have a unique solution we can impose in addition the following constraint∑
i 2ixi >

∑
j 2jyj.

We shall show how to apply both programs (25) and (40) with their corresponding
solutions

pj =
Eu[Xj exp {−S(X)λ}]

Eu[exp {−S(X)λ}]
, j = 1, . . . , 2n (101)

and

pj =
Eu[Xj exp

{
−I{S(X)=b}λ

}
]

Eu[exp
{
−I{S(X)=b}λ

}
]

, j = 1, . . . , 2n, (102)

respectively.
Substituting S(x, y) = (

∑
i 2ixi)(

∑
j 2jyj) into (101) and (101) we obtain

pX
j =

Eu[Xj exp
{
−(
∑

i 2iXi)(
∑

k 2kYk)λ
}
]

Eu[exp {−(
∑

i 2iXi)(
∑

k 2kYk)λ}]
, j = 1, . . . , n. (103)

and

pX
j =

Eu[Xj exp
{
−I{(

P
i
2iXi)(

P
j
2jYj)=b}λ

}
]

Eu[exp
{
−I{(

P
i
2iXi)(

P
j
2jYj)=b}λ

}
]

, j = 1, . . . , n, (104)

respectively and similarly for their pY
j counterparts. Note that

1. Formula(103) can be written as

pX
j =

1
2Eu[exp

{
−(
∑

i, i6=j 2iXi + 2j)(
∑

k 2kYk)λ|Xj = 1
}
]

Eu[exp {−(
∑

i 2iXi)(
∑

k 2kYk)λ}]
, j = 1, . . . , n

(105)
and similarly its (104) counterpart.

2. Z(1) =
∑n

i=0 2iXi has a discrete uniform distribution over the points
{0, 1, . . . ,

∑n
i=0 2i} and similarly Z(2) =

∑n
i=0 2iYi.

3. An alternative way of getting the pj ’s in (101) and (102) is to find the
marginals of (99) and (100) by integrating out the corresponding joint pdf’s.
By doing so we automatically obtain that the j-th marginal gj(xj) will have
a Ber(pj) distribution with pj given in (101) and (102), respectively.

4. To get the pair-wise marginal pdf’s gj,k(xj , yk), we need again to integrate out
(99) and (100) with respect to x1, . . . , xj−1, xj+1, . . . , xn, y1, . . . , yk−1, yk+1, . . . , yn.
By doing so we automatically obtain that the (j, k)-th marginal gjk(xj , yk) will
have a two-parametric Ber(pX

j , pY
k ) distribution. The parameter vector with

the components (pX
j , pY

k ) can be calculated similar to (73), that is, directly
(without resorting to gj,k(xj , yk)).

We shall show how to calculate the vector (104) and the pair-wise dependent
marginals gi1i2(xi1 , xi2) (see (75) and the associated parameters pxixj

in (73)) using
IME for the particular case b = 77. In this case there are two symmetric solutions:
(x,y) = ((0, 1, 1, 1), (1, 0, 1, 1)) and (x,y) = ((1, 0, 1, 1), (0, 1, 1, 1))).
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Denote by C(x,y) = I{
P

i,j 2i+jxiyj=77}. According to Lemma (3.1), λ = −∞.

Further more, according to Lemma 3.2, the optimal nonparametric IS distribution
g(x,y) is uniformly distributed on the feasible set That is
g ((0, 1, 1, 1), (1, 0, 1, 1)) = g ((1, 0, 1, 1), (0, 1, 1, 1))) = 0.5 and 0 otherwise.

The components of the vectors pX and pY can be written as

pX
j =

Eh [Xj exp {−λC(X,Y)}]

Eh [exp {−λC(X,Y)}]
=

0.5 · Eh [exp {−λC(X,Y)} |Xj = 1]

Eh [exp {−λC(X,Y)}]
, k = 0, 1, 2, 3

pY
j =

Eh [Yj exp {−λC(X,Y)}]

Eh [exp {−λC(X,Y)}]
=

0.5 · Eh [exp {−λC(X,Y)} |Yj = 1]

Eh [exp {−λC(X,Y)}]
, k = 0, 1, 2, 3

Calculating these expressions for λ = −100 yields

pX
j = pY

j =





1, j=0
1, j=1
0.5, j=2
0.5, j=3

The number of feasible solutions can be estimated using IS as

|̂X ∗| =
1

N

N∑

k=1

I{(Xk,Yk) feasible}
1

f(Xk, pX)f(Y k, pY )
,

where

(Xk,Yk) ∼ f(x, pX)f(y, pY ) =

3∏

i=0

Ber (xi; p
x
i ) Ber (yi; p

y
i ) .

Using a sample N = 1000 it produces a 95%-confidence interval (2.032 ± 0.3304).
Although the method required here more computations than the exhaustive search
(which required only 256 feasibility evaluations), the variance of its estimate is
reduced as compared with the CMC method. (Using the same N = 1000, CMC
produced a 95%-confidence interval (3.072± 1.7286)).

8 Applications

Here we present several well known counting and optimization problems, for which
our algorithms can be useful.

Knapsack Problem

We consider here two well known knapsack problems, the so-called bounded knapsack
problem, which reads as

max
∑r

k=0 ckxk

s.t.
∑n

k=1 akxk ≤ b

xk ∈ {0, 1, . . . , r}, ∀k = 1, . . . , n

(106)

and the so-called multiple knapsack problem, which reads as

max
∑m

i=1

∑n
k=1 ckxik

s.t.
∑n

k=1 akxik ≤ bi, ∀i=1, . . . , m

∑m
i=1 xik ≤ 1, ∀k = 1, . . . , n

xik ∈ {0, 1}, , ∀i = 1, . . . , m; k = 1, . . . , n.

(107)
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Note that here all ak, bk, ck are fixed constants.

Set Covering, Set Packing and Set Partitioning

Note that set partition program reduces to the program (78), provided A is a 0-1
matrix, xi ∈ {0, 1}, ∀i = 1, . . . , n and the vector b = 1, provided m2 = 0 and
the minimization is replaced by maximization. The set covering and set packing
problems are similar to the set partition one, provided the equality constraints
Ax = 1 is replaced by Ax ≥ 1 and Ax ≤ 1, respectively.

Consider a finite set {M = 1, 2, . . . , m} and let Mj , j ∈ N be a collection of
subsets of the set M where N = {1, 2, . . . , n}. A subset F ⊆ N is called a cover of
M if ∪j∈F Mj = M . The subset F ⊆ N is called a packing of M if Mj ∩Mk = ∅
for all j, k ∈ F and j 6= k. If F ⊆ N is both a cover and packing, then it is called a
partitioning.

Suppose cj is the cost associated with Mj . Then the set covering problem is
to find a minimum cost cover. If cj is the value or weight of Mj , then the set
packing problem is to find a maximum weight or value packing. Similarly, the set
partitioning problem is to find a partitioning with minimum cost. These problems
can be formulated as zero-one linear integer programs as shown below. For all i ∈M
and j ∈ N , let

aij =

{
1 if i ∈Mj

0 otherwise

and

xj =

{
1 if j ∈ F

0 otherwise

Then the set covering, set packing and set partitioning formulations are given by

min
∑n

j=1 cjxj

s.t.
∑n

j=1 aijxj ≥ 1 i = 1, 2, . . . , m

xj = 0, 1 j = 1, 2, . . . , n,

max
∑n

j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ 1 i = 1, 2, . . . , m

xj = 0, 1 j = 1, 2, . . . , n,

and
max

∑n
j=1 cjxj

s.t.
∑n

j=1 aijxj = 1 i = 1, 2, . . . , m

xj = 0, 1 j = 1, 2, . . . , n,

respectively.

Bipartite Matching and Permanent

From now on we will consider the case where all aij ’s are are 0-1. It is well known
that calculating of a permanent can be reduced to calculation of perfect matching in
a biparate graph G((V1, V2), E) with independent set of nodes V1 = (v11, . . . , v1n)
and V2 = (v21, . . . , v2n). Node that in a biparate graph every edge has one node in
V1 and another in V2 and no two edges share a common vertex. Note also that a
matching is a collection of of edges M ⊆ E such that each vertex occurs at most
once in M . A perfect matching is a matching of size n. Let Qi denotes the set of
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matching of size i in G. Assume that Qn is non-empty, so that G has a perfect
matching of vertices V1 and V2. It is well known [12] that the number of perfect
matchings in G equals to the permanent A, that is, |Qn| = per(A), where per(A) is
defined as

per(A) = |X ∗| =
∑

x∈X

n∏

i=1

aixi
. (108)

Here X is the set of all permutations x = (x1, . . . , xn) of (1, . . . , n) and the elements
aij can be written as

aij =





1, if the nodes v1i and v2j are in E

0, otherwise.

The general matching problem can be written as

min
∑n

i=1

∑n
j=1 aijxij

s.t.
∑n

k=1 xik = 1, ∀i = 1, . . . , n

∑n
j=1 xji = 1, ∀i = 1, . . . , n

xij ∈ {0, 1}, 1 ≤ i ≤ j ≤ n.

(109)

The SAT Problem

The most common SAT problem comprises the following two components:

• A set of n Boolean variables {x1, . . . , xn}, representing statements that can
either be TRUE (=1) or FALSE (=0). The negation (the logical NOT) of a variable
x is denoted by x. For example, TRUE = FALSE. A variable or its negation is
called a literal.

• A set of m distinct clauses {S1, S2, . . . , Sm} of the form Si = zi1∨zi2∨· · ·∨zik
,

where the z’s are literals and the ∨ denotes the logical OR operator. For
example, 0 ∨ 1 = 1.

The binary vector x = (x1, . . . , xn) is called a truth assignment, or simply an
assignment. Thus, xi = 1 assigns truth to xi and xi = 0 assigns truth to xi, for
each i = 1, . . . , n. The simplest SAT problem can now be formulated as: find a
truth assignment x such that all clauses are true.

Denoting the logical AND operator by ∧, we can represent the above SAT problem
via a single formula as

F1 = S1 ∧ S2 ∧ · · · ∧ Sm,

where the {Sk} consist of literals connected with only ∨ operators. The SAT formula
is then said to be in conjunctive normal form (CNF).

The problem of deciding whether there exists a valid assignment, and, indeed,
providing such a vector, is called the SAT-assignment problem [19].

It is shown in [19] that the SAT-assignment problem can be modeled via rare-
events with ℓ given in (34), that is,

ℓ = Eu

[
I{

P
m
i=1 Ci(X)=m}

]
,
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where u denotes the “uniform” probability vector (1/2, . . . , 1/2). It is important to
note that here each Ci(X) = I{

P
n
k=1 aikXk≥bi} can be also written alternatively as

Ci(x) = max
j
{0, (2 xj − 1) aij}. (110)

Here Ci(x) = 1 if clause Si is TRUE with truth assignment x and Ci(x) = 0 if it is
FALSE, A = (aij) is a given clause matrix that indicate if the literal corresponds to
the variable (+1) , its negation (-1), or that neither appears in the clause (0). If for
example xj = 0 and aij = −1, then the literal xj is TRUE. The entire clause is TRUE
if it contains at least one true literal. In other words, ℓ in (34) is the probability that
a uniformly generated SAT assignment (trajectory) X is valid, that is, all clauses
are satisfied, which is typically very small. The SAT counting problem has been
therefore reduced to a problem involving the estimation of a rare-event probability
in the form (20) and one can proceed directly with the single constrained MinxEnt
to find the optimal joint n dimensional pdf g(x). A simple analyzes of (34), (110)
(see also for details [19]) that such single constrained MinxEnt does not lead to
decomposable g(x). As results an iterative time consuming MinxEnt is used in
[19]. To find a decomposable g(x) counterpart of the SAT problem we take into
account that each Si is in the form Si = zi1 ∨ zi2 ∨ · · · ∨ zik

and then based on
the representation S1 ∧ S2 ∧ · · · ∧ Sm define the following associated set of linear
constraints.

zi1 + zi2 + · · ·+ zik
≥ 1, i = 1, . . . , m. (111)

Clearly the representation (111) fits (32) and the linearity of the constraints causes
the decomposability.

Example 8.1 (SAT Example) As a simple example consider the following SAT
assignment

(x1 + x̄2)(x̄1 + x̄2 + x3)(x2 + x3)

In this case the system of linear constraints (111) reduces to

x1 + (1− x2) ≥ 1

(1 − x1) + (1− x2) + x3 ≥ 1,

x2 + x3 ≥ 1,

where each x1, x2, x3 ∈ {0, 1}.
It is not difficult to see that for SAT problems SME reduces to IME. The reason

is that in the right hand side of each constraint in SAT we have ≥ 1. Clearly, if for
any constraint the right hand would be not ≥ 1, SME would be different from IME.

Proceeding with our example we can write ℓ as ℓ = Pu(C1 +C2 +C3 = 3),where
C1 = I{X1−X2≥0}, C2 = I{X1+X2−X3≤1} and C3 = I{X2+X3≥1}.

Remark 8.1 DNF form If SAT is given in the DNF form, then one can simple
construct a corresponding single-constrained MinxEnt and again find an alternative
to (37) optimal pdf g(x). Note that the DNF for of SAT corresponds to constrained
LIPprograms with the view that constraints given in the “OR”, rather than in the
standard “AND” form.

9 Numerical Results

We present here numerical results with the proposed algorithms for counting and un-
constrained optimization. Constrained optimization will be considered some where
else. For counting we shall use mainly the CCE and the depth-1 SME algorithms.
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As we mentioned we found that VM algorithms are more robust than its SME and
CE counterparts. In contrast, for unconstrained optimization, like TSP we found
that all proposed algorithms perform similarly. The main reason for that is, - there
is no need to use LR’s in optimization. If not stated otherwise we set the rarity
parameter ρ = 0.001 and the smoothing parameter α = 0.7. Note that ρ = 0.001
applies to the elite samples only for the intermidiate states of our algorithms, that
is when m̂t < m. For m̂t = m we accomulate all elite samples.

A huge collection of instances (including real-world) is available on OR-LIB site
:

http://people.brunel.ac.uk/ mastjjb/jeb/orlib/scpinfo. html;
for multiple-knapsack on http://hces.bus.olemiss.edu/tools.html and
http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite/index.html.
Knapsack instances generator is given on: http://www.diku.dk/ pisinger/codes.html
To study the variability in the solutions we run each problem 10 times and report

our statistics based on these 10 runs of our algorithms. In the following tables the
quantities are defined as follows (for each iteration t):

1. “Mean, max and min |̂X ∗|” denote the sample mean, maximum and minimum
and minimal values of the 10 estimates of |X ∗|.

2. “Mean, max and min Found” denote the sample mean, maximum and min-
imum of values found in each of the 10 samples of size N . Note that the
maximum value can be viewed as the lower bound of the true unknown quan-
tity |X ∗|.

3. PV denotes the the proportion of generated values, averaged over 10 replica-
tions.

4. RE denotes the mean relative error for |̂X ∗|, averaged over the 10 runs.

5. λ denotes the mean λ, averaged over the 10 runs.

6. S denotes the mean entropy averaged over the 10 runs.

7. m denotes the mean number of satisfied constraints at t-th iteration and
averaged over the 10 runs.

In all counting problems we compared the performance of the CE-based algo-
rithms like the standard CE, CCE and SME Algorithm 4.3 using depth-1 (with fixed
λ = −100) with their counterparts VM-based counterparts, like standard VM, with
and without LR’s . While running the algorithms we found that for some par-
ticular instances, all CE-based algorithms produce incorrect estimators, while their
counterpart, the VM-based algorithm, always delivers correct (unbiased) ones. This
undesirable phenomenon of CE-based algorithms has not been yet fully understood
and it is under investigation. In Section 9.2.2 we present such (“pathological”) 3-
SAT example and discuss the performance of CE-based and VM-based algorithms.

Note again that while using the depth-1 SME Algorithm 4.3 we apply weighted
function approach, which is based on formulas (83), (84).

In all our numerical studies we generated the matrices A = (aij) randomly and
made sure that they are sparse. The sparsity insures that the counting quantity
|X ∗| is small (is associated with rare-event probability, that is, the most difficult
cases), while random matrices generation insures the diversity of the cases. All
cases have been checked first on small randomly generated models, such that |X ∗|
is relatively small, say 0 ≤ |X ∗| ≤ 100, and such that their exact solution via full
enumeration is available. Only, after that larger models have been tested.

To speed up the convergence we implemented the following.
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• To speed up the convergence of the SME Algorithm 4.3 we set λ = −10 for
its first 2-3 iterations and for the remaining ones we set λ = −100.

• In many counting problems involving rare-events the elements of p̂t are ap-
proaching either 0’s or 1’s as t increases. We set them automatically either
0’s or 1’s as soon as they reach, say 0.01 and 0.99, respectively. By doing so,
at iterations t + 1, . . . , T one needs to generate and update only a very small
portion of p’s, namely these which remain in the interval (0.01, 0.99).

• If a particular constraint is satisfied simultaneously by several random vari-
ables, say by r random variables, then while updating the parameter vector p

the weight for the corresponding variables will be equal to 1/r. For example,
consider the following constraints X1+X2+X3 ≥ 1. Assume that a particular
out come is X1 = 0, X2 = 1, X3 = 1. Then while updating the parameter
vector p = p1, p2, p3 we put for this particular outcome the following weights
p1 = 0, p2 = 1/2, p3 = 1/2.

Below we consider separately decision making, counting, rare-event simulation
and unconstrained optimization.

9.1 Decision Making

Since counting is typically a difficult problem in many cases decision making is used
instead. For example, in a constrained program, one would like to know if there is
a feasible solution, that is, all m constrained are satisfied, rather than to count the
total number of such feasible solutions. In the nomenclature of our CE-based and
VM-based counting algorithms, this is equivalent of saying: our algorithm passes all
m constraints successfully (the decision is YES) or it gets stucked somewhere before
reaching m (the decision is NO). Intuitively, it is clear that it will be typically easier
for a CE-based based VM-based to give a correct (yes) solution if the number of
valid trajectories |X ∗| is not small relative to m. Indeed, in our numerical results
with decision making we typically did not observe that any of CE-based and VM-
based algorithms had a problem of reaching m, provided n ≤ m ≤ 500 and the ratio
|X ∗|/m ≥ 0.1. This means, for example, that for m = 100 and for |X ∗| ≥ 10 all
of our counting algorithms will deliver with very high probability the true answer -
yes. It is crucial to note that like in optimization, no likelihood ratios are involved
in decision making.

What happens when |X ∗| is small relative to m, say when |X ∗|/m ≤ 0.02? We
found that this is quite problematic to give a meaningful answer in the sense of
the relative error (RE) to any of our algorithms. We also believe that this could

be problematic for any randomized algorithm, while requiring the RE of |̂X ∗| to be
within 1-2% from |X ∗|.

We address this problem differently by borrowing the notion of relative discrep-
ancy (precision) we have been using for optimization problems [21]. Recall that in
optimization, the relative discrepancy of 1-2% of the solution from the best know
solution means that if, say the best known solution (maximum problem) is 100, so
any solution of an algorithm within the range (98, 100) means that the discrepancy
is within 2%.

To keep similarity with optimization we define in parallel to the relative error
(RE) what we call the relative discrepancy (RDd) of a decision making algorithm
and the relative discrepancy of a counting algorithm (RDc) as

RDd = m−bmT

m+|X ∗| , if m̂T = m,

m+|X ∗|−bmT

m , if m̂T < m,

(112)
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and as

RDc = m+|X ∗|−( bmT +| bX ∗|)
m+|X ∗| , if m̂T = m,

m+|X ∗|−bmT

m , if m̂T < m,

(113)

respectively. Note that we assume in both cases that the constrained set is not empty
and thus m exists. To clarify, consider a set with m =100 constraints and let |X ∗| =
10. Assume that in both (decision making and counting) cases we obtained m̂T = m,
that is, our algorithms went through all constraints. In this case we automatically
obtain that RDd = 0, since for the (yes, no) decision making problem, the answer

will be yes. Assume further that the counting algorithm delivered |X̂ ∗| = 5 instead
of the true |X ∗| = 10. We have, in this case RDc = 5/110 ≈ 5%. Assume now
that in another run, we obtained in both (decision and counting) cases m̂T = 90,
then RDd = RDs = 20%, that is, we deliver an error (discrepancy) of 20%. Using
the criteria RDs instead of RE, in all our experiments we performed with counting
models (disregarding the “pathological” ones) we obtained that RDs < 5%, while
the original RE could be 50% and even more, in particular for the instances where
|X ∗|
m ≤ 0.1.

9.2 Counting

Below we present performance of our SME and CCE algorithms for counting using
independent marginals of g(x). The improvement from using pairwise dependence
will be addressed somewhere else. Recall that in all our experiments with the CCE
Algorithm 6.1 and SME Algorithm 4.3 we set λ = −100 and used depth-1 policy.

We also present the performance of our algorithms to count the number of
optimal solutions in some constrained optimization problems, where the optimal
solution was either obtained via full enumeration (for small models) or (the best
known solution) was taken from the web site.

Permanent

Below we present performance of the SME Algorithm 4.3 for the permanent problem
with randomly generated matrix A. To proceed, we define the notion of the so-called
random K-permutation matrix, denotes as K-PERM matrix, where K, (K < n)
means the number of independent uniformly distributed Bernoulli random variables
at each row of the permanent matrix A of the size n × n. We found empirically
that in order for the true permanent value |X |∗ to be very small relative to |X |,
(and, thus for ℓ = |X |∗/|X | to be very small) the parameter K should be chosen as
K ≤ 0.2n.

Table 9 present the performance of the depth-1 SME Algorithm 4.3 for a 4-
PERM randomly generated 20× 20 permanent matrix using N = 100, 000 samples
with |X |∗ = 2, which was obtained using full enumeration.

One can see that the SME Algorithm 4.3 performs quite accurately. For this
instance we also run the indicator version of Algorithm 4.3, which is based on
the indicators (80), (81). We found that the weighted SME version with r = 3
outperforms a little bit its indicator counterpart as far as the accuracy, (relative
error (RE)) is concerned, while the remaining parameters are similar to Table 9.
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Table 9: Performance of the SME Algorithm 4.3 for a 4-PERM randomly generated
20× 20 permanent matrix using N = 100, 000 samples.

t Mean Max Min PV RE S m
0 0.0 0.0 0.0 0.00 NaN 6.58 16
1 2.0 2.8 1.4 0.00 0.180 5.56 18
2 2.0 2.1 1.9 0.01 0.025 3.80 20
3 2.0 2.1 2.0 0.02 0.025 2.78 20
4 2.0 2.1 2.0 0.03 0.012 2.35 20
5 2.0 2.0 1.9 0.03 0.017 2.18 20
6 2.0 2.0 2.0 0.03 0.016 2.11 20

We also compared the performance of the SME Algorithm 4.3 with that of
the MinxEnt one introduced in [18], where (similar to the TSP trajectories [21])
the permanent trajectories where generated using an auxiliary probability matrix
P = (pij), which is associated with the permanent matrix A. We did not find any
advantage of using Algorithm 4.3 as compared to its the MinxEnt counterpart.

Counting Hamiltonean Cycles

Below we present performance of the CCE Algorithm 4.3 for counting Hamiltonean
cycles with a randomly generated matrix A. Similar, to the random K-PERM we
define the so-called random K-Hamiltonean matrix, denotes as K-HAM matrix,
where, as before, K, (K < n) denotes the number of independent uniformly
distributed Bernoulli random variables at each row of the matrix A. We found
empirically that in order for |X |∗ to be very small relative to |X |, the parameter K
should be chosen as K ≤ 0.15n.

Table 10 present the performance the CCE Algorithm 6.1 for a 4-HAM randomly
generated (30 × 30) matrix using N = 100, 000 samples. The trajectories (tours)
where generated using the node transition algorithm (see Algorithm 4.7.1 of [21]).
The results are self explanatory.

Table 10: Performance of the CCE algorithm for the HC problem for a 4-HAM
matrix A = (30× 30) and N = 100, 000.

|X ∗| Found
t Mean Max Min Mean Max Min PV RE
0 36.27 283 0 0.20 1 0 0.0000 2.3608
1 62.84 109 32 22.10 26 17 0.0005 0.3272
2 66.09 76 55 55.10 60 49 0.0065 0.0885
3 62.75 68 56 55.30 62 49 0.0344 0.0496

The SAT Problem

Table 11 presents the performance of the CCE Algorithm 6.1 for a random 3-SAT
problem with an instance matrix A = (25 × 100) for N = 50, 000. The results are
self- explanatory. We also run this problem using the depth-1 SME Algorithm 4.3
and got very similar results. However, running it with the standard CE Algorithm
4.2 the results were worse in particular in terms of relative error.
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Table 11: Performance of the CCE algorithm for the random 3-SAT with an instance
matrix A = (25× 100) and N = 50, 000.

|X ∗| Found
t Mean Max Min Mean Max Min PV RE S m RDc

0 0.0 0.0 0.0 0 0 0 0.00 NaN 8.66 96 0.10
1 3.6 21.4 0.0 0 1 0 0.00 2.045 8.16 98 0.08
2 10.8 38.7 0.0 1 3 0 0.00 1.113 7.10 99 0.07
3 6.8 26.8 0.8 4 6 1 0.00 1.027 6.23 99 0.07
4 6.2 8.5 4.2 5 6 3 0.00 0.201 5.74 99 0.07
5 5.0 8.5 2.0 4 6 2 0.03 0.355 5.43 99 0.07
6 5.3 8.0 3.1 5 6 3 0.10 0.265 5.24 100 0.02
7 5.9 9.2 4.1 5 6 3 0.17 0.217 3.53 100 0.00
8 5.3 8.7 1.2 5 6 2 0.23 0.382 2.32 100 0.00
9 5.6 6.0 4.1 6 6 3 0.27 0.122 1.72 100 0.00
10 6.5 11.2 5.6 6 6 3 0.32 0.242 1.47 100 0.00
11 6.2 8.4 5.8 6 6 4 0.34 0.119 1.38 100 0.00
12 5.9 6.1 5.5 6 6 4 0.35 0.032 1.35 100 0.00
13 6.0 6.3 6.0 6 6 6 0.38 0.015 1.33 100 0.00
14 6.0 6.0 5.9 6 6 6 0.41 0.005 1.33 100 0.00
15 6.0 6.0 5.9 6 6 6 0.43 0.004 1.33 100 0.00

Figure 3 presents a typical dynamics of the CCE Algorithm 6.1 for the random
3-SAT with an instance matrix A = (25× 100) and N = 50, 000.

Figure 3: Typical dynamics of the CCE Algorithm 6.1.
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Tables 12 and 13 presents the performance of the CCE Algorithm 6.1 for random
3-SAT problems with an instance matrices A = (40 × 160) and A = (75 × 325),
respectively for N = 100, 000. The last table was taken from the SATLIB website
www.satlib.org. The results are self-explanatory again. We also run both problems
using the depth-1 SME Algorithm 4.3 and got again very similar results. The
standard CE have failed to produce meaningful results in both cases.
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Table 12: Performance of the CCE Algorithm 6.1 for the random 3-SAT for the
instance matrix A = (40× 160) and N = 100, 000.

|X ∗| Found
t Mean Max Min Mean Max Min PV RE S m
0 0.0 0.0 0.0 0 0 0 0.00 NaN 13.86 151
1 0.0 0.0 0.0 0 0 0 0.00 NaN 13.25 153
2 96.0 960.3 0.0 0 1 0 0.00 3.000 12.28 155
3 88.9 328.6 0.0 2 9 0 0.00 1.164 11.13 157
4 93.9 120.1 0.0 42 106 0 0.00 0.387 8.46 159
5 111.0 134.6 45.9 98 113 12 0.05 0.207 6.52 160
6 113.0 123.1 105.9 109 113 98 0.22 0.038 4.49 160
7 109.5 113.3 104.5 109 111 105 0.38 0.025 3.55 160
8 109.7 113.5 105.1 109 111 105 0.49 0.021 3.16 160
9 109.9 114.6 104.5 109 111 105 0.53 0.025 3.04 160
10 111.7 116.9 104.8 109 111 105 0.54 0.027 3.00 160

Table 13: Performance of the CCE Algorithm 6.1 for the random 3-SAT for the
instance matrix A = (75× 325) with N = 100, 000

|X ∗| Found
t Mean Max Min Mean Max Min PV RE S m
0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 NaN 25.99 301
2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 NaN 25.06 307
4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 NaN 24.70 308
6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 NaN 23.68 309
8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 NaN 22.65 312
10 0.0 0.0 0.0 0.0 0.0 0.0 0.00 NaN 21.22 314
12 0.0 0.0 0.0 0.0 0.0 0.0 0.00 NaN 19.89 316
14 773.8 7738.3 0.0 0.1 1.0 0.0 0.00 3.000 17.59 320
16 359.9 2243.4 0.0 0.5 3.0 0.0 0.00 2.075 13.60 323
18 787.9 2601.6 0.0 127.0 988.0 0.0 0.01 1.054 11.14 324
20 1583.2 7507.5 0.0 383.2 1265.0 0.0 0.05 1.285 9.43 325
22 1752.5 6306.7 560.6 720.6 1278.0 3.0 0.11 0.888 6.16 325
24 1424.1 1685.0 1320.1 1106.5 1305.0 79.0 0.20 0.071 5.62 325
26 1403.5 1470.5 1326.5 1252.7 1285.0 1099.0 0.26 0.030 5.26 325
28 1388.4 1457.5 1351.4 1271.1 1281.0 1258.0 0.29 0.020 5.24 325
30 1397.4 1467.2 1347.4 1275.1 1288.0 1266.0 0.29 0.027 5.16 325

Figure 4 presents a typical dynamics of the CCE Algorithm 6.1 with the instance
matrices A = (40× 160).

9.2.1 Counting the Number of Feasible Solutions in Constrained Op-
timization Problems

Set Covering, Set Packing and Set Partition

Table 15 presents the performance of the depth-1 SME Algorithm 4.3 for a bench
mark set covering optimization problem with N = 50, 000 using the weighted func-
tion approach with r1 = r2 = 3 for both constraints and the objective function. We
set

1. The objective function being simply a sum of all variables.
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Figure 4: Typical dynamics of the CCE Algorithm 6.1 for the random 3-SAT with
an instance matrix A = (40× 160) and N = 100, 000
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2. The constraints as Ax ≥ b, where A is a (20× 20) matrix given in Table 14,
each row of which contains 3 randomly generated 1’s and the rest are 0’s.

3. All elements of the vector b equal to 2.

Figure 5 presents a typical dynamics of the SME Algorithm 4.3 for the random
3-SET problem with N = 50, 000.

We call this model, the random 3-SET model to distinguish it from the random
3-SAT model. Using full enumeration we found that the total number of multiple
extrema in our random 3-SET model equals 31. The results are self-explanatory
again. We also run this problem using the CCE Algorithm 6.1 and got very similar
results.
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Table 14: (20× 20) matrix

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1

Table 15: Performance of the depth-1 SME Algorithm 4.3 for the set covering
problem with N = 50, 000 using the weighted function approach with r = 3.

|X ∗| Found
t Mean Max Min Mean Max Min PV RE S m
0 23.1 62.9 0.0 0 0 0 0.00 1.033 6.93 19
1 28.7 31.7 26.1 19 25 11 0.02 0.064 5.12 20
2 31.4 49.2 17.8 28 31 16 0.03 0.266 4.29 21
3 30.0 32.5 26.6 30 31 23 0.03 0.060 3.86 21
4 32.0 34.0 30.5 31 31 30 0.03 0.036 3.66 21
5 30.8 32.5 29.7 31 31 31 0.03 0.027 3.56 21
6 30.4 31.7 29.3 31 31 30 0.03 0.028 3.53 21

Knapsack Problem

Table 16 presents the performance of the CCE Algorithm 6.1 for the knapsack
problem with the instance matrix A = (20 × 11) and N = 10, 000 using the
weighted function approach with r = 3. This problem was taken from the web-
site http://elib.zib.de. Using full enumeration we found that the total number of
multiple extrema is 612. One can see that Algorithm 6.1 performs quite well.
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Figure 5: Typical dynamics of the SME Algorithm 4.3 for the random 3-SET prob-
lem with N = 50, 000.
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Table 16: Performance of the CCE Algorithm 6.1 for the knapsack problem with
the instance matrix A = (20× 11) and N = 10, 000

t Mean Max Min PV RE S m RDc

0 639.6 943.7 419.4 0.00 0.225 6.93 10 55.73
1 619.2 697.6 564.8 0.03 0.072 5.78 11 0.02
2 630.8 706.5 557.0 0.07 0.059 5.18 11 0.03
3 628.1 698.1 533.2 0.08 0.083 4.95 11 0.03
4 573.7 671.2 504.9 0.09 0.083 4.88 11 0.06
5 599.3 719.6 525.7 0.09 0.100 4.72 11 0.03
6 576.9 646.4 508.0 0.09 0.071 4.76 11 0.06
7 611.4 802.2 531.0 0.10 0.119 4.72 11 0.13
8 628.1 862.0 557.1 0.09 0.139 4.62 11 0.09
9 591.6 707.3 507.6 0.09 0.086 4.57 11 0.01
10 637.8 754.8 562.1 0.09 0.102 4.66 11 0.10
11 602.5 702.7 536.1 0.09 0.082 4.79 11 0.12
12 600.3 683.9 543.9 0.09 0.064 4.71 11 0.02
13 602.5 729.1 494.8 0.09 0.126 4.75 11 0.06
14 583.3 613.0 515.9 0.10 0.047 4.66 11 0.02
15 596.7 676.9 540.0 0.10 0.075 4.57 11 0.12

Figure 6 presents a typical dynamics of the CCE Algorithm 6.1 for the knapsack
problem with the instance matrix A = (20× 11) and N = 10, 000.
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Figure 6: Typical dynamics of the CCE Algorithm 6.1 for the knapsack problem
with the instance matrix A = (20× 11) and N = 10, 000
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9.2.2 “Honesty” of the Algorithms

While performing different simulation experiments with the proposed algorithms
for counting and rare-event we found that the CE-based ones, like SME, CCE
and CE generate from time to time (in about 5-10%) incorrect estimators. For
some instances the error might reach 100% or even more. We call such instances,
the “pathological” ones. Further more, while performing experiments with such
“pathological” models, we found that the CE-based algorithms produce seemingly
“stable, low variance”, estimators. But as we mentioned such seemingly “stable,
low variance” estimators might be misleading. Based on this we came to conclusion
that there exist quite a large set of randomly generated instances (models) for
which cross-entropy-based algorithms are not robust, or simply fail. Unfortunatelly,
we do not have yet a clear mechanism to distinguish between a “good” and a
“pathological” models.

In contrast, the VM-based counting algorithms always produces a stable estima-
tor.

Returning to the issue of robustness of the CE-based and VM-based counting
algorithms we found based on extensive numerical results the following:

1. The lack of robustness of CE-based algorithms occurs for instances where the
true counting quantity |X ∗| is very small, like 1 ≤ |X ∗| ≤ 20. To observe this
phenomenon we generated a set of random 3-SAT models with the instance
matrices 20 × 80 and selected (using full enumeration) only these for which
1 ≤ |X ∗| ≤ 20. We find that there are about 5-10% such “pathological”
models, for which all CE-based algorithms generates “bad” estimators and
thus, fail.

2. Although VM-based algorithms always produce statistically sound estimators,
the resulting estimators for “pathological” models have intractable (very high)
relative error. In particular, we found that it does not matter how many
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iteration one performs with VM, the resulting p will be close to the original
u. In short, for “pathological” models the VM-based algorithms perform
similar to CMC ones. Thus, in order to get a relative error say of 10% for a
“pathological” model using VM, one needs to take a sample size of order of
the size of the entire space |X |. This is useless, of course.

To provide more insight on this, consider, for example, counting 0-1-Tables
with a m×n matrix. Assume that n = m and that the margins in all rows and
columns are equal to m/2. It is not difficult to see that in this case the optimal
p = u and that any VM-based algorithm will be not able to move from u,
which is exactly what it should be. In contrast the CE-based algorithms will
typically move from u to some incorrect value of p 6= u and thus will deliver
a wrong final estimate of |X ∗|.

It follows from the above that the crucial difference between VM-based and CE-
based counting algorithms is that the former can identify a “pathological” model,
while the latter can not. Such identification by VM can be done by several ap-
proaches, say based on the dynamics of the relative error or based on the dynamics
of p̂t. For instance, VM can declare a “pathological” model if the relative error
remains very high say during first 10-15 iterations, or alternatively, if most of the
components of the optimal p̂t are remain close to u, as t decreasis. We call such
property of VM, the honesty of the VM algorithm.

Below we provide more details on the honesty of the VM-based algorithms and
the “dishonesty” of CE-based ones by discussing a specific example.

Example 9.1 The following data concerns one of our “pathological” models we
have generated (among many good ones). In particular it concerns a random 3-
SAT 20× 80 instance matrix for which using full enumeration we found |X ∗| = 15.
Also, using the deterministic CE updating formula (55) (via full enumeration) we
obtained for that particular case the optimal 20-dimensional vector p, most of the
components of which were close to 0.5. This is exactly a type of a “pathological”
model, since p ≈ u and no parametric version is able to move “far away“ from
u = (0.5, . . . , 0.5).

Indeed, as expected, taking a huge sample of N = 10, 000, 000 we obtained after
10 iteration with VM algorithm an estimator p̂ very close to the true p. Taking
next another sample of N = 10, 000, 000, the resulting estimator (24) delivered |X̂ ∗|
=15. Smaller samples, like N = 1, 000, 000 produced estimators with high relative
error of both, |X̂ ∗| and of p̂. Note also that in the last case most of the components
of p̂ have been fluctuating around the value 0.5. Clearly, because the true p is close
to u, VM performs similar to CMC, that is, both are useless. On the positive side
of VM: it is, at least, “honest“.

While running CE-based algorithms, like CE anf SME, we obtained a complitely
different picture as far as the estimors p̂ and |X̂ ∗| are concerned. In particular,
starting from N = 10, 000 and up, most of the components of p̂ have degenereted
either to 0 or to 1. As result, we obtained a “stable” (low variance, but wrong)

estimator |X̂ ∗| = 9 instead of the true one |X̂ ∗| = 15.
As a final remark, note that we found numerically (for small models), that if

most of the components of the optimal vector p are quite different from u (close
to degenerated ones, 0’s or 1’s), both CE-based and VM-based algorithms produce
stable and accurate estimators (good model), but if most of the components of p

are close to u, we have a “pathological” model with all the consequences as per
above. Clearly, since the optimal vector p we are looking for is unknown, we have
to rely on the ”honesty” of the VM-based and not on the CE-based algorithms.

We shall explain now why the CE-based algorithms might behave differently from
the VM-based one by arguing that the resulting p updating can be quite different.
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Indeed, consider the following two basic CE and VM optimization programs [21]

max
p
K(p) = max

p

N∑

k=1

I{S(Xk)≥b} W (Xk; u, p̂t−1) ln f(Xk, p) (114)

and

min
p
V(p) = min

p

N∑

k=1

I{S(Xk)≥b} W (Xk; u, p̂t−1)W (Xk, u, p), (115)

respectively.
The corresponding gradient of K(p) and V(p) are

∇K(p) =

N∑

k=1

I{S(Xk)≥b} W (Xk; u, p̂t−1)∇ ln f(Xk, p) (116)

and

∇V(p) =

N∑

k=1

I{S(Xk)≥b} W (Xk; u, p̂t−1)W (Xk, u, p)∇ ln f(Xk, p), (117)

respectively. Comparing (116) and (117) it readily follows that the LR part W (Xk, u, p)
is missing in the gradient ∇K(p). Thus, the gradient ∇K(p) based on the cross-
entropy presents only an approximation of gradient counterpart based on variance
minimization. It is well known that the latter one is the true one, presenting the core
of most Monte Carlo experiments. Since the LR W (Xk, u, p) is an essential part
in V(p) and ∇V(p), the CE and VM updatings of p (based on (116) and (117)) can
be quite different, and this is the reason that CE-based algorithms might generate
misleading result.

Note finally that our numerical results suggests that the VM algorithm based
on the program (115), while omitting the LR term W (Xk; u, p̂t−1) in (117), that
is, using the VM algorithm based on the program

min
p
V(−)(p) = min

p

N∑

k=1

I{S(Xk)≥b}W (Xk, u, p), (118)

performs similarly (and some time even better) than the standard CE based on the
original program (114), that is, the one containing the LR term W (Xk; u, p̂t−1).
This phenomenon might be explained by comparing the gradients ∇K(p) in (116)
and ∇V(−)(p), that is,

∇V(−)(p) =
N∑

k=1

I{S(Xk)≥b}W (Xk, u, p)∇ ln f(Xk, p). (119)

Indeed, it is readily seen that both gradients∇K(p) and ∇V(−)(p) are similar in the
sense that they differ only in their LR terms; the former contains W (Xk; u, p̂t−1),
but it misses the part W (Xk, u, p), while the latter vice-versa. Note again that the
bias introduced while omitting a LR terms is often less than having a large variance
which is based on both LR terms.

Note also that our numerical experiments suggest that even the standard VM
algorithm based on the truncated gradient (119) is still typically ”honest” as its
original VM program (115) is.

Note finally that more research is needed in order to understand why without
the LR term W (Xk, u, p) the CE-based methods still perform well for “good” (not
“pathological”) models.
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9.3 Rare Events

Here we present comparative studies of the standard CE and VM algorithms with
the view to show higher efficiency (accuracy) of VM. We consider a network with 20
nodes from [9] depicted in Figure 9.3. In particular, we consider estimation of the
rare-event probability ℓ(u) = Eu[I{S(X)≥γ}] with the performance S(X) being the
shortest path from node 1 to 20, X ∼ exp(u), where u and γ are fixed in advance.
Note that using full enumeration we found that the total number of feasible path
in the network equals 830.
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Figure 7: A network.

Table 17 presents the performance of the standard CE and VM algorithms the
model in Fig.9.3 with γ = 10, N = 50, 000 and N1 = 100, 000. Here Mean T denotes
the mean number of iterations averaged over 10 replications, N and N1 denote the
sample size for estimating the optimal parameter vector v in exp(v). We set all 30
parameters equal to 1 and selected ρ = 0.01 and α = 0.7.
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Table 17: Performance of CE and VM with equal initial parameters, γ = 10, N =
50,000, N1 = 100,000.

Method CE VM
Mean 1.233E-08 1.234E-08

ℓ̂ Max 2.076E-08 1.629E-08
Min 8.640E-09 8.997E-09

RE 0.33293 0.20606
Mean T 7.0 8.1

Mean CPU 36.32 45.44

It follows from above that both approaches perform similarly. While updating
the parameter vector v we found that 6 among 30 elements of v have change the
most. These elements corresponds to the parameters u1, u2, u3, u28, u29, u30

According to [22], such elements are called the bottleneck ones. Taking this into
consideration we kept the 6 bottlenecks parameters u1, u2, u3, u28, u29, u30 equal
unity, while we increased the remaining (non-bottleneck) ones.

Table 18 presents data for such a case. In particular it presents data similar to
Table 17 but with Weib(α, u−1/α) pdf instead of exp(u) pdf. As before we assume
that only u is controllable, while all α’s are equal to 1/4. In addition, we set
u1 = u2 = u3 = u28 = u29 = u30 = 1, while the remaining 24 ones we set equal to
4.

Table 18: Performance of CE and VM with bottleneck elements, γ = 2000, N =
100,000, N1 = 300,000.

Method CE VM
Mean 7.415E-09 4.013E-09

ℓ̂ Max 4.628E-08 6.138E-09
Min 9.744E-11 2.784E-09

RE 1.85189 0.24994
Mean T 9.6 12.6

Mean CPU 109.85 260.44

One can clearly see that for this case (with bottleneck parameters) VM outper-
forms substantially CE.

We next consider the some model in Figure 9.3 but with Bernoulli random
variables.

Table 19 presents performance of CE and VM algorithms with all equal initial
parameters u = 0.999. We set N = 10,000, N1 = 50,000, α = 0.7, ρ = 0.01.
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Table 19: Performance of CE and with equal initial Bernoulli parameters u = 0.999,
N = 10,000, N1 = 50,000.

Method CE VM
Mean 2.232E-6 2.073E-6

ℓ̂ Max 3.858E-6 2.184E-6
Min 1.008E-6 1.996E-6

RE 0.45903 0.03720
Mean T 8.0 8.0

Mean CPU 8.18 27.96

Table 20 presents data similar to Table 19, where we set the 6 bottleneck param-
eters u1, u2, u3, u28, u29, u30 to 0.97, while we keep the remaining 24 parameters
equal to 0.999.

Table 20: Performance of CE and VM with bottlenecks Bernoulli elements
N = 10,000,N1 = 50,000.

Method CE VM
Mean 4.353E-5 5.436E-5

ℓ̂ Max 5.527E-5 5.593E-5
Min 2.700E-5 5.233E-5

RE 0.32695 0.02323
Mean T 8.0 8.0 0

Mean CPU 11.93 16.18

It follows from he results of Table 19 and Table 20 that in both cases VM
outperforms CE.

9.4 Optimization

In this section we present performance of CE, VM, MinxEnt and IME for uncon-
strained optimization. Constrained optimization will be considered some where
else.

Table (21) presents comparative studies of the following 4 methods: CE, VM,
MinxEnt and IME for a couple of TSP models taken from
http://www.iwr.uni-heidelberg.de/groups/comopt/software/ TSPLIB95/atsp/

In all numerical results we use the same CE parameters as for the ft53 problem,
that is, ρ = 10−2, N = 10 n2, α = 0.7 and d = 5 (see (96)). To study the variability
in the solutions, each problem was repeated 10 times. In Table 21, n denotes the
number of nodes of the graph, T̄ denotes the average total number of iterations
needed before stopping, b̂1 and b̂T denote the average initial and final estimates
of the optimal solution, b∗ denotes the best known solution, ε̄ denotes the average
relative experimental error based on 10 replications, ε∗ and ε∗ denote the smallest
and the largest relative error among the 10 generated shortest paths, and finally
CPU denotes the average CPU time in seconds.
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Table 21: Comparative studies for TSP.

file n b∗ Alg. bb1
bbT ε̄ ε∗ ε∗ T̄ CPU

ftv33 34 1286 CE 3248.2 1333 0.0365 0.0000 0.0684 17.8 56.59
VM 3366.4 1286 0.0000 0.0000 0.0000 23.8 127.60
PME 3296.7 1308 0.0171 0.0000 0.0412 19.8 173.83
IME 1305.8 0.0154 0.0000 0.0435 18.30 76.77

ry48p 48 14422 CE 40254.9 14840 0.0289 0.0133 0.0579 31.2 424.88
VM 42208.1 14960.7 0.0373 0.0162 0.0597 61.7 935.29
PME 41041.7 14952 0.0367 0.0228 0.0537 34.0 992.51
IME 14888.7 0.0323 0.0160 0.0461 30.60 731.60

It follows that all 4 methods work reasonable well and it is difficult to give
priority to any of them.

The RSA problem

Since the RSA problem has only one optimal solution we regard as an optimization
one in the sense that no LR term are involved while updating the parameter vector
p. Like in TSP we run the RSA problem with CE, VM, MinxEnt and IME. We
found that all four methods, produce accurate estimators (find both prime numbers)
for the RSA models containing up to 100 binary digits. More research is under way
with the view to find the prime numbers for large RSA models while using pair wise
dependent and some other enhancements.

10 Conclusion and Further Research

In this paper we presented a new generic minimum cross-entropy method, called
SME for rare-event probability estimation, counting, and optimization. The main
idea of SME approach is to associate with each original problem an auxiliary single-
constrained convex MinxEnt program of special type, which has a closed form so-
lution. We proved that the optimal pdf g(x) obtained from the solution of this
MinxEnt program is a zero variance pdf, provided the ”temperature” parameter λ
is set to minus infinity. For some particular instances we showed how to approxi-
mate the optimal zero variance pdf by a normal pdf using a central limit theorem.
In addition we proved that the parametric pdf f(x, p) based on the product of
marginals of the optimal zero variance pdf g(x) coincide with the parametric pdf of
the standard CE method. A remarkable feature, which we discovered in this paper
is that originally designed at the end of 1990-th as a heuristics for estimation of
rare-events and COP’s, CE has strong connection with the proposed MinxEnt and,
thus strong mathematical foundation.

The crucial difference between the proposed SME method and its standard CE
counterparts is in their simulation-based versions: in the latter we always require
to generate (via Monte Carlo) a sequence of tuples including the temperature
parameter and the parameter vector in the optimal marginal pdf’s, while in the
former we can fix in advance the temperature parameter (to be set a large negative
number) and then generate (via Monte Carlo) a sequence of parameter vectors of
the optimal marginal pdf’s only. In addition, in contrast to CE, neither the elite
sample nor the rarity parameter is needed in SME. As a result, the proposed SME
Algorithm becomes simpler, faster and at least as accurate as the standard CE.

Motivated by the SME method we have introduced a new updating rule for the
parameter vector p in the standard cross-entropy method, called the CCE updating.
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We showed numerically, that

1. Typically CCE and depth-1 SME algorithm produce quite accurate estimators
of p. In particular, we found numerically that they allow quite accurate ap-
proximation of counting problems with up to one hundred of decision variables
and several hundreds of constraints.

2. In order to get accurate counting estimators with the SME and CCE Algo-
rithms it is highly advisable to use its weighted functions C(x), version, that
is, the ones defined in (68) and (70) instead of their indicator one I{C(X)=m}.

3. We found that the VM-based algorithm based on the solution of the variance
minimization problem are more robust as compared to their CE-based couter-
parts. In spite of this fact we still recommend using (for large models) the
CE-based algorithms. The main reason is that CE-based algorithms can typ-
ically update the vector p analytically, rather than numerically and as result,
they are approximatelly two times faster. Before applying a CE-based algo-
rithm we do, however, suggest to make a short pilot run using the standard
VM algorithm (say, even without using the LR term W (X, u, p))) to decide
whether or not the model is “pathological”. If the answer is - YES, then ap-
ply the ”honesty” principle and quit (stop); if - NO, then run the model with
CCE or SME.

Back to the Roots

While performing different simulation experiments with the proposed algorithms for
counting and rare-event we found that all CE -based ones, like SME and CCE gen-
erate occasionally “bad“ estimators. For some instances the error reached 100% or
even more. We call such instances, which present a non-neglegable set of problems,
the “pathological” ones. Furthermore, while performing experiments with such
“pathological” models, we found that the CE-based algorithms produce seemingly
”stable, low variance”, estimators. But as we mentioned such estimators might be
quite misleading. In contrast, the VM-based counting algorithms always produces
statistically sound (unbiased) estimator. Our explanation for this follows from the
comparison of formulas (114)-(117). It is due to the fact that the LR function
W (X, u, p), which is an essential part of the VM-based algorithms is ”missing” in
the CE-based counterparts.

All this can be summarized as follows:
Introduced in 1997 [15] for rare-event simulation, the original VM algorithm was

replaced almost immediately by its CE-counterpart. The main reason for that the
CE program (114) can be solved analytically as compared to the VM program (115),
which needs to be solved numerically and, thus is little bit more time consuming.
Another reason is that CE appears to be a very efficient method in optimization,
since in optimization there is no need to use LR terms at all.

The discovery of this paper on the ”honesty” of VM-based algorithms, (and in
particular on the ”missing” LR term W (X, u, p) in CE), brings us back to the
origins, namely to the original VM algorithm [15]. However, as mentioned, in
spite of this fact we still recommend using the convenient CE-based algorithms, by
making first a simple pilot run with the standard VM algorithm to find out whether
or not the underlying model is “pathological”.

Further Research

The entire area of counting using randomized algorithms and in particular the ones
based on MinxEnt, CE and VM are still in its infancy.

As for further research for counting we intend to consider the following issues:
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1. Develop fast VM-based algorithms for counting.

2. Use the large deviation theory to prove polynomial convergence and speed of
convergence of the SME Algorithm 4.3 for rare-event probability estimation
and thus, for estimation of the counting quantity |X ∗| according to (24).

3. Apply the above counting algorithms to a broad variety of counting problems,
like Hamiltonian cycles, counting 0-1-Tables, self-avoiding walks, counting
problems associated with graph coloring, cliques and counting the number of
multiple extrema in a multi-extremal function.

4. Although we obtained some preliminary encouraging results while using pair-
wise dependence, much more work is needed before it might be recommended
in practice.

5. Investigate the issue of non robustness of CE with the view to generate robust
CE algorithms for rare-events and counting, similar as VM does.

6. Apply the dynamic programming approach of [6] for efficient generation from
the pdf g(x) in (38).

7. Consider the program (problem of moments) (64) as an alternative to the
MinxEnt program (4), (5).

Although CE and MinxEnt have been successfully applied to many unconstrained
combinatorial optimization problems [21], their success to constrained optimization
(both combinatorial and integer) is still very limited. To the best of our knowledge,
the only alternative is the penalty function approach [21].

Finally

1. An interesting and challenging issue is to develop efficient CE and MCE based
classification algorithms competitive with the well known boosting algorithms.

2. Find the relation ship between the MinxEnt based method for optimization
and the method of the Arora et all [2] called, The Multiplicative Weights Up-
date Method. The latter is based Lagrange relaxation and involves Kullback-
Leibler’s cross-entropy.
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