
Importance sampling algorithms for first passage time

probabilities in the infinite server queue

Ad Ridder

Department Econometrics and Operations Research

Vrije University

de Boelelaan 1105, 1081 HV Amsterdam, Netherlands

email aridder@feweb.vu.nl

Abstract

This paper applies importance sampling simulation for estimating rare-event

probabilities of the first passage time in the infinite server queue with renewal

arrivals and general service time distributions. We consider importance sam-

pling algorithms which are based on large deviations results of the infinite server

queue, and we consider an algorithm based on the cross-entropy method, where

we allow light-tailed and heavy-tailed distributions for the interarrival times

and the service times. Efficiency of the algorithms is discussed by simulation

experiments

Keywords: Simulation, Queueing, Rare Events, Importance Sampling.

1 Introduction

The infinite server queue, denoted by G/G/∞, is a queueing model with infinitely

many servers who are accessed by customers arriving according to a renewal pro-

cess. The service times of customers are independent, identically distributed random

variables, independent of the renewal arrival process. Customers leave the system

after service. At time 0 we start with an empty system and then we like to find the

probability distribution function of the first passage time of high levels.

Infinite server queues have been studied widely in the queueing literature because

of their theoretical importance. However, they have also their practical usefulness,

for instance to analyse service systems with a large number of servers such as call

centers. The dynamics of the number of busy agents (the name for servers in a call
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center) is equivalent to an infinite server queue as long as not all agents are busy.

A remarkable application is the modelling of the software failure occurrence process

as an infinite server queue (Dohi et al. 2002). When a software product has been

developed it is checked for faults by inserting test cases at instants of a renewal

process, usually a Poisson process. A test case consists of running a small process

of the software product which ends after a random time V (independently of the

other processes). Then one considers the number of incompleted processes to be the

number of detected faults, this is equivalent to the infinite server queue.

In case of the M/M/∞ model (Poisson arrivals and exponential service times)

Keilson (1979, Chapter 5) derives the Laplace transform of the first passage time

probability density function, and then it is possible to apply a numerical inversion

algorithm. However, when the arrival process and/or the service times have other

probability distributions, there are no computable expressions for the first passage

time probabilities, and thus we might develop approximation algorithms, or, as we

shall do in this paper, efficient simulation algorithms.

The notation in the general model is as follows: the interarrival times are i.i.d.

random variables U1, U2, . . . with density function f(x). The j-th renewal (arrival)

occurs at time A(j) = U1 + · · · + Uj , and the number of renewals upto time s

is denoted by N(s). The service times are i.i.d. random variables V1, V2, . . . with

density function g(x). The cdf of the service time V is denoted by G(x) and its

associated complementary cdf by G(x) = 1 − G(x). The assumption is that the

(generic) interarrival time U and service time V have finite means, and rates λ and

µ, respectively. Finally, the cumulant generating function of a random variable X

is defined to be ψX(θ) = logE[exp(θX)] for θ ∈ R (if the expectation exists). We

say that X has a heavy-tailed distribution if the cumulant generating function of X

does not exist for positive θ. We allow both light-tailed and heavy-tailed interarrival

and service times.

We consider a sequence of these infinite server queues, indexed by n: {Qn(s) :

s ≥ 0}, n = 1, 2, . . ., where Qn(s) represents the number of busy servers at time s in

a G/G/∞ model with interarrival times U1/n, U2/n, . . . and service times V1, V2, . . .

(in which the (Uj) and (Vj) processes are as before). Notice that in the n-system

the renewals occur at times An(j) = A(j)/n, and that the number of renewals upto

time s is Nn(s) = N(ns). Define the first passage times

Tn(j) = inf{s ≥ 0 : Qn(s) = j} (j = 1, 2, . . .),

where Qn(0) = 0. The problem of interest in this paper is

ℓn = P (Tn(nx) ≤ t ) ,
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for some specified time horizon t > 0 and large overflow level nx. We shall show in

Section 3 that these probabilities decay exponentially fast to 0 as n → ∞, and this

says that we deal with rare events. Hence, when we would implement a standard

Monte Carlo simulation algorithm for estimating these rare-event probabilities, the

execution times will become too long to be practical for large n. Various variance

reduction techniques exist to overcome this problem. In this paper we shall apply

importance sampling. Let Y n(k) be an unbiased estimator of ℓn under the original

probability measure P based on k i.i.d. samples. In importance sampling we simulate

under another probability measure, say P IS, such that the original measure P is

absolutely continuous relative to this new measure. The new estimator Y ∗
n (k) is

again unbiased, i.e., EIS[Y ∗
n (k)] = ℓn, if we incorporate the likelihood ratio dP/dP IS.

(With the superscript IS we show explicitly that the expectation is taken w.r.t.

measure P IS.)

Finding a good probability P IS is the main issue in importance sampling. The

criterion is to keep the relative error
√

VarIS[Y ∗
n (k)]/EIS[Y ∗

n (k)] as small as possible.

The best performance is obtained when the relative error remains bounded as n→

∞. Then the number of samples (simulation runs) required to achieve a fixed relative

error is constant for all n. However, in practice this is difficult to find and the most

frequently used criterion is asymptotical optimality (Bucklew 2004, Heidelberger

1995):

lim
n→∞

logEIS[(Y ∗
n (k))2]

logEIS[Y ∗
n (k)]

= 2. (1)

Basically, it says that the relative error of the estimator Y ∗
n (k) behaves as ℓǫn

n , where

ǫn = o(1) as n → ∞. Consequently, since ℓn → 0 exponentially fast, the relative

error might grow polynomially (or at some other subexponential rate), and thus also

the sample sizes grow polynomially in order to obtain a prespecified relative error.

There is ample literature on importance sampling algorithms for efficient simu-

lation in queueing models to estimate rare-event probabilities, see the overviews

in Heidelberger (1995), Juneja and Shahabuddin (2006), and Blanchet and Mandjes

(2007). The majority of these studies concerns blocking probabilities, buffer overflow

(or level crossing) probabilities, tail probabilities, and waiting time tail probabilities.

Initially these studies focused on static importance sampling algorithms with fixed

tilted probability density functions for the arrival and service time processes to be

used throughout the simulation runs (Heidelberger 1995). Since the first counter

examples by Glasserman and Wang (1997) it became well known that static algo-

rithms for many rare-event queueing problems cannot be asymptotically optimal,

specifically in queueing network models and in queueing models with heavy-tailed
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distributions. The focus of research shifted to adaptive algorithms in which during

the simulation run the tilted probability density functions are updated based on

current state or time. Asymptotically optimal state-dependent importance sampling

algorithms have been developed for level-crossing probabilities in Jackson networks

by Dupuis et al. (2007), and for waiting time tail probabilities in the single server

queue with heavy-tailed distributed service times by Blanchet and Glynn (2008).

Szechtman and Glynn (2002) considered a time-dependent importance sampling al-

gorithm for the estimation of the tail probabilities P (Qn(t)/n ≥ x) in the infinite

server queue, and they showed asymptotical optimality.

The first passage time of a stochastic process to a barrier is an important issue

in insurance and finance. For instance, equity default swaps are financial instru-

ments whose buyers are compensated when some stock process hits a specified low

boundary (Asmussen et al. 2008). Usually this targeted boundary is extremely deep

which makes hitting the boundary during a certain time horizon a rare event. In the

context of hitting large levels the first passage time problem received less attention

in the queueing literature. The contribution of this paper has several aspects. In

the first part of the paper we consider the M/M/∞ model for which we construct

a time-dependent importance sampling algorithm based on sample path large de-

viations results for the Erlang loss model (Shwartz and Weiss 1995, Chapter 12),

and we prove its asymptotic optimality. This importance sampling algorithm si-

mulates interarrival and service times from exponentially tilted distributions with

time-dependent tilting parameters given by the optimal path to overflow.

In the second part we consider the general G/G/∞ model and we present three

importance sampling algorithms for the first passage time problem. All three are

versions or adaptations of existing methods, and they are all time-dependent. These

algorithms are investigated empirically by executing simulation experiments.

• An adaptation of the Szechtman and Glynn algorithm. The adaptation was

needed to simulate service times whereas in the original algorithm it sufficed

to simulate whether an arriving customer would still be present at time t.

We allow light- and heavy-tailed distributions for both interarrival and service

times.

• An adaptation of the M/M/∞ algorithm. In the adapted version there is

no resampling of scheduled event times after a new event as in the M/M/∞

algorithm. The service times must have light-tailed distributions.

• A version of the cross-entropy algorithm introduced in Rubinstein and Kroese
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(2004). We allow light- and heavy-tailed distributions for both interarrival and

service times.

The paper is organised as follows. First we discuss the M/M/∞ model for

which we can implement an asymptotically optimal importance sampling algorithm

(Section 2.1). In Section 3 we show the large deviations limit in the general G/G/∞

model, and we sketch the importance sampling algorithm of Szechtman and Glynn

(2002) for the tail probabilities. We present the three algorithms for the general

model in Section 4, and in Section 5 we consider the cross-entropy based algorithm

in case of Pareto distributed service times. Simulation results are given and discussed

in Section 6.

2 The M/M/∞ model

When the arrival process is Poisson and the service times are exponentially distri-

buted, the process of the number of busy servers in the n-system (Qn(s))s≥0 is a

continuous-time Markov chain (CTMC). Scaling the process by n we get a CTMC

with jump rate nλ in the jump direction 1/n, and with jump rate nqµ in the jump

direction −1/n if Qn(s)/n = q. For such processes the chapters 5 and 12 in Shwartz

and Weiss (1995) develop sample path large deviations which we shall summarise

here.

1. Starting point is the Cramér large deviations for Poisson random variables:

let X1, X2, . . . be i.i.d. Poisson-λ random variables with cumulant generating

function

ψX(θ) = logE[exp(θX1)] = λ(eθ − 1) (θ ∈ R),

and associated Legendre-Fenchel transform I(a) = supθ(θa − ψX(θ)), and

let Yn =
∑n

k=1Xk. Then Yn is a Poisson-nλ random variable, for which

limn→∞
1
n

logP (Yn/n ≥ a) = −I(a).

2. Item 1 is generalised to the (Qn(s)/n) process where jumps are governed by

two independent Poisson random variables with rates nλ (for the +1 jump)

and nqµ (for the −1 jump when the current state is Qn(s)/n = q). Thus, the

corresponding cumulant generating function is

ψ(θ, q) = λ
(

eθ − 1
)

+ qµ
(

e−θ − 1
)

(θ ∈ R). (2)
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3. The local rate function is the Legendre-Fenchel transform of ψ(θ, q) in the

direction y, defined formally by

I(q, y) = sup
θ∈R

(θy − ψ(θ, q)) . (3)

It is an exercise (Exercise 12.3 in Shwartz and Weiss (1995)) to get that the

optimising θ satisfies

eθ =
y +

√

y2 + 4λqµ

2λ
. (4)

This θ is called the tilting parameter.

4. There exists a nonnegative absolute continuous function q∞ on [0, t] such that

for any ǫ > 0

lim
n→∞

P

(

sup
0≤s≤t

|Qn(s)/n− q∞(s)| < ǫ

)

= 1. (5)

The function q∞ is usually refered to as the most likely path of the process

because almost all sample paths of the scaled process are close to it (in the

sup norm). Identification of this path reveals that it does not reach the target

level x when x > λ/µ (page 291 in Shwartz and Weiss (1995)).

5. Sample path large deviations for absolute continuous functions φ hold:

lim
ǫ↓0

lim
n→∞

1

n
logP

(

sup
0≤s≤t

|Qn(s)/n− φ(s)| < ǫ

)

= −J1(φ),

where the functional J1 satisfies

J1(φ) =

∫ t

0
I
(

φ(s), φ′(s)
)

ds. (6)

Thus, sample path large deviations are limiting logarithmic expressions for proba-

bilities that sample paths stay close to some given function φ. The functional J1 is

called the large deviations rate function.

For our purposes we consider the set Φ of all functions φ that reach the target

level x before (or at) time t starting from φ(0) = 0. We have according to Theorem

12.18 in Shwartz and Weiss (1995)

lim
n→∞

1

n
logP ((Qn(s)/n)0≤s≤t ∈ Φ) = − inf{ J1(φ) : φ ∈ Φ }.
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Corollary 1. Let φ∗ = arg min{ J1(φ) : φ ∈ Φ }, then

lim
n→∞

1

n
log ℓn = −J1(φ

∗). (7)

Proof. In Mandjes and Ridder (2001) we have shown that there is a unique φ∗ that

minimises J1 on Φ. Then (7) follows immediately by the principle of the largest

term (Dembo and Zeitouni, 1998, Lemma 1.2.15):

lim
n→∞

1

n
log ℓn = lim

n→∞

1

n
logP ((Qn(s)/n)0≤s≤t ∈ Φ) = −J1(φ

∗).

The minimiser φ∗ is called commonly the optimal path to overflow. For ease of

notation we drop the ∗ to indicate this optimal path since it will be the only path

we will consider in the rest of this section. In Mandjes and Ridder (2001) we found

its expression:

φ(s) =
c

µ
(eµs − 1) +

λ

µ

(

1 − e−µs
)

, 0 ≤ s ≤ t, (8)

with the constant c obtained by substituting φ(t) = x. To get the large deviati-

ons rate J1(φ) we need to determine the tilting parameters (4) along the path by

substituting q = φ(s) and y = φ′(s). Therefore we deal with a tilting function

θ(s), 0 ≤ s ≤ t.

The optimal path and its associated tilting function are plotted in Figure 1.
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Figure 1. The optimal path φ and the tilting function θ for the case

λ = 1, µ = 0.2, x = 6, t = 10.

We construct an importance sampling algorithm by exponentially tilting interarrival

and service time distributions using the tilting function θ(s) along the optimal path

to overflow.
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Algorithm 1.

1. Compute the tilting function θ(s) in (4) where the function φ(s) is given in (8).

2. Simulate a sample path of Qn(s), s ≥ 0 starting at Qn(0) = 0 from event to event

until either time horizon t has reached, or Qn(s) ≥ nx, whatever comes first.

3. Let s be an arrival epoch. Then the next interarrival time is set U/n with U

drawn from an exponential distribution with rate λeθ(s). The service times of

all customers (present and just arrived) are rescheduled and drawn independently

from an exponential distribution with rate µ e−θ(s).

4. Let s be a departure epoch. Then the ongoing interarrival time is rescheduled to

become U/n with U drawn from an exponential distribution with rate λeθ(s). And

the service times of all present customers are rescheduled and drawn independently

from an exponential distribution with rate µ e−θ(s).

2.1 Proof of asymptotic optimality

In this section we shall prove that Algorithm 1 gives an asymptotically optimal

estimator. The theorem follows after five lemmas.

Lemma 1. Recall the tilting function θ(s) in (4) and the optimal path φ(s) to

overflow in (8). For all 0 ≤ s ≤ t

λ
(

eθ(s) − 1
)

+ φ(s)µ
(

e−θ(s) − 1
)

= constant,

with the constant equal to the c in (8).

The proof of Lemma 1 is in Appendix A.

Lemma 2. The large deviations rate function J1(φ) of (6) satisfies

J1(φ) =

∫ t

0
θ(s)φ′(s) ds− ct.

The proof of Lemma 2 is in Appendix A.

Consider a random realisation of the process (Qn(s))s≥0: the consecutive jump times

are S0 = 0 < S1 < S2 < · · · < SMn
with associated states Qn(Sj), j = 0, 1, . . . ,Mn,

where the last jump brings either the state above nx or the time beyond t (whatever

comes first).
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Lemma 3. Define

An =

Mn−1
∑

j=0

(Sj+1 − Sj)
(

λ
(

eθ(Sj) − 1
)

+
Qn(Sj)

n
µ
(

e−θ(Sj) − 1
))

Bn =

Mn−1
∑

j=0

θ(Sj)
Qn(Sj+1) −Qn(Sj)

n
.

(9)

Under the importance sampling measure P IS we have for any ǫ > 0:

lim
n→∞

P IS ( |An − ct| < ǫ) = 1,

and

lim
n→∞

P IS

( ∣

∣

∣

∣

Bn −

∫ t

0
θ(s)φ′(s) ds

∣

∣

∣

∣

< ǫ

)

= 1.

Proof. Recall the most likely path (5) of the scaled process (Qn(s)/n)s≥0. The same

arguments apply under the importance sampling probability measure P IS with the

transition rates given in Algorithm 1:

lim
n→∞

P IS

(

sup
0≤s≤t

|Qn(s)/n− qIS∞(s)| < ǫ

)

= 1. (10)

The most likely path qIS∞ is identified by solving its associated differential equation

(see Shwartz and Weiss, 1995, Section 5.1). After doing the calculus we find qIS∞ = φ,

i.e., the optimal path to overflow under the original probability measure P equals

the most likely path under the importance sampling probability measure P IS.

By Lemma 1 we have for any jump time Sj

λ
(

eθ(Sj) − 1
)

= c− φ(Sj)µ
(

e−θ(Sj) − 1
)

.

When we substitute this in An we get

An =

Mn−1
∑

j=0

(Sj+1−Sj)c+

Mn−1
∑

j=0

(Sj+1−Sj)

(

Qn(Sj)

n
− φ(Sj)

)

µ
(

e−θ(Sj) − 1
)

. (11)

We analyse the two summations seperately. Clearly, when the rare event does not

occur, the last jump is just after t, arbitrary small as n→ ∞:

lim
n→∞

P IS(|SMn
− t| < ǫ |Tn(nx) > t) = 1.

However, the same holds given that the rare event occurs (Tn(nx) ≤ t), because the

scaled process {Qn(s)/n} is close to the optimal path φ which is increasing to x,
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i.e., φ(s) ↑ x as s ↑ t which can be seen easily from the explicit formula for φ in (8).

Thus, SMn

P IS

→ t, and hence

Mn−1
∑

j=0

(Sj+1 − Sj)c = SMn
c

P IS

→ ct (as n→ ∞). (12)

The intervals between jumps [0, S1), [S1, S2), . . . form a partitition of [0, t], with

interval lengths Sj+1 −Sj → 0 (in probability). Thus the second summation of (11)

can be considered to be a Riemann sum approximation of the integral

∫ t

0

(

Qn(s)

n
− φ(s)

)

µ
(

e−θ(s) − 1
)

ds.

This integral is in absolute value less than

∫ t

0

∣

∣

∣

∣

Qn(s)

n
− φ(s)

∣

∣

∣

∣

µds ≤ µt sup
0≤s≤t

∣

∣

∣

∣

Qn(s)

n
− φ(s)

∣

∣

∣

∣

.

Hence, with (10) we get that the second part in (11) convergences (in P IS) to 0, and

with (12) we have shown the first statement of the lemma.

For the second statement we shall argue that {(Qn(s+ h)−Qn(s))/nh : 0 ≤ s ≤ t}

converges in probability to φ′ as n→ ∞ and h→ 0:

sup
0≤s≤t

∣

∣

∣

∣

Qn(s+ h)/n−Qn(s)/n

h
− φ′(s)

∣

∣

∣

∣

≤ sup
0≤s≤t

∣

∣

∣

∣

Qn(s+ h)/n−Qn(s)/n

h
−
φ(s+ h) − φ(s)

h

∣

∣

∣

∣

+ sup
0≤s≤t

∣

∣

∣

∣

φ(s+ h) − φ(s)

h
− φ′(s)

∣

∣

∣

∣

.

The first sup-term goes to 0 (in P IS) as n→ ∞ for any h 6= 0. The second sup-term

goes to 0 as h→ 0.

Next we reason that

Bn =

Mn−1
∑

j=0

θ(Sj)
Qn(Sj+1) −Qn(Sj)

n

=

Mn−1
∑

j=0

(Sj+1 − Sj)θ(Sj)
Qn(Sj+1)/n−Qn(Sj)/n

Sj+1 − Sj

=

Mn−1
∑

j=0

(Sj+1 − Sj)θ(Sj)
(

φ′(Sj) + ∆j

)

, (13)
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where supj |∆j |
P IS

→ 0 as n→ ∞. The tilting function θ(s) is positive and increasing

in s (calculus with its expression (4)), thus we can bound θ(s) for all s by θ(t) to

obtain
∣

∣

∣

∣

∣

∣

Mn−1
∑

j=0

(Sj+1 − Sj)θ(Sj)∆j

∣

∣

∣

∣

∣

∣

≤ θ(t)

(

sup
j

|∆j |

)

Mn−1
∑

j=0

(Sj+1 − Sj)

= θ(t) sup
j

|∆j |SMn

P IS

→ 0.

The remaining term in (13) can be considered to be a Riemann sum approximation

of the integral
∫ t

0
θ(s)φ′(s) ds.

This completes the proof.

Suppose that an importance sampling simulation of the process (Qn(s))s≥0 is exe-

cuted. Let Ln = dP/dP IS be the likelihood ratio of a random realisation.

Lemma 4. The likelihood ratio can be expressed as Ln = en(An−Bn) where An and

Bn are given in (9).

Proof. For ease of notation we set Qj = Qn(Sj) for the state of the process at the

j-th jump time, σj = exp(θ(Sj)) for the exponent of the tilting function at the j-th

jump time, and Xj = Sj+1 − Sj for the time between two consecutive jump times.

These interjump timesXj , j = 0, 1, . . . are independent exponentially distributed

random variables (minimum of exponentials) with state dependent rates nλσj +

Qjµ/σj . The states (Qj)j=0,1,... form a Markov chain with ±1 jumps and transition

probability nλσj/(nλσj+Qjµ/σj) for the +1 jump at time Sj+1, and its complement

for the −1 jump. Let A be the set of all +1 jumps, and D be the set of all −1 jumps.
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The likelihood ratio Ln = dP/dP IS of a random realisation is:

Ln =

Mn−1
∏

j=0

(nλ+Qjµ) exp
(

− (nλ+Qjµ)Xj

)

(nλσj +Qjµ/σj) exp
(

− (nλσj +Qjµ/σj)Xj

)

×
∏

j+1∈A

nλ

nλ+Qjµ

nλσj +Qjµ/σj

nλσj
×

∏

j+1∈D

Qjµ

nλ+Qjµ

nλσj +Qjµ/σj

Qjµ/σj

=

Mn−1
∏

j=0

exp
(

−Xj

(

nλ(1 − σj) + Qjµ(1 − σ−1
j )
))

×
∏

j+1∈A

1

σj
×

∏

j+1∈D

σj

=

Mn−1
∏

j=0

exp
(

−Xj

(

nλ(1 − σj) + Qjµ(1 − σ−1
j )
))

×

Mn−1
∏

j=0

exp
(

− (Qj+1 −Qj)θ(Sj)
)

= exp



−

Mn−1
∑

j=0

Xj

(

nλ(1 − σj) + Qjµ(1 − σ−1
j )
)



 × exp
(

−

Mn−1
∑

j=0

θ(Sj)(Qj+1 −Qj)
)

= exp



n

Mn−1
∑

j=0

(

Xj

(

λ(σj − 1) +
Qj

n
µ(σ−1

j − 1)
)

− θ(Sj)
Qj+1 −Qj

n

)





= en(An−Bn).

Let Yn = 1{Tn(nx) ≤ t} indicate the occurrence of the rare event.

Lemma 5.

lim
n→∞

1

n
logEIS[L2

nYn] = −2J1(φ).

Proof. Let Zn = An −Bn. From Lemmas 2 and 3 we conclude that

Zn
P IS

→ ct−

∫ t

0
θ(s)φ′(s) ds = −J1(φ).

Repeating the details of these lemmas we would obtain that Zn is uniformly bounded

(in n) almost surely. Thus, Zn = −J1(φ) + ∆n with

|∆n| ≤ K (a.s.), and ∆n
P IS

→ 0.
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Now,

1

n
logEIS[L2

nYn] =
1

n
logEIS[L2

n|Yn = 1]P IS(Yn = 1)

=
1

n
logEIS[exp(2nZn)|Yn = 1] +

1

n
logP IS(Yn = 1)

=
1

n
log e−2nJ(φ)EIS[exp(2n∆n)|Yn = 1] +

1

n
logP IS(Yn = 1)

= −2J1(φ) +
1

n
logEIS[exp(2n∆n)|Yn = 1] +

1

n
logP IS(Yn = 1)

→ −2J1(φ) (n→ ∞),

because the rare event will occur most likely under the importance sampling measure,

i.e., limn→∞ P IS(Yn = 1) = 1.

Theorem 1. The importance sampling estimator Y ∗
n(k) obtained by repeating k

times Algorithm 1 is asymptotically optimal.

Proof. It suffices to show asymptotic optimality for the one-run (unbiased) estimator

Y ∗
n = LnYn. And this follows immediately from Lemma 5 and the large deviations

result for the rare event probability limn→∞
1
n

log ℓn = −J1(φ):

logEIS[L2
nYn]

logEIS[LnYn]
=

1
n

logEIS[L2
nYn]

1
n

log ℓn
→

−2J1(φ)

−J1(φ)
= 2.

3 The general model

The general model comprises a renewal process for arrivals and i.i.d. service times.

We refer to Glynn (1995) for the following results concerning the sequence of scaled

variables (Qn(t)/n)∞n=1 at the horizon t which is taken fixed (recall that always

Qn(0) = 0).

1. The limiting cumulant generating function satisfies

lim
n→∞

1

n
logE

[

eθQn(t)
]

= ψQ(θ, t)

= −

∫ t

0
ψ−1

U

(

− log
(

eθG(s) +G(s)
))

ds (θ ∈ R).

Actually, this limit behaviour is found in two steps: in the first step Glynn

(1995) finds the moment generating function as an integral w.r.t. the renewal
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process:

E
[

eθQn(t)
]

= E

[

exp
(

∫

[0,t]
log
(

eθG(t− s) +G(t− s)
)

Nn(ds)
)

]

.

In the second step Glynn (1995) shows the following limit by bounding the

expression of the right hand side

lim
n→∞

1

n
logE

[

eθQn(t)
]

=

∫ t

0
ψN

(

log
(

eθG(s) +G(s)
))

ds, (14)

where ψN (θ) = −ψ−1
U (−θ) in case of a renewal arrival process.

2. The Legendre-Fenchel transform of ψQ(θ, t) is

J2(t, x) = sup
θ∈R

(θx− ψQ(θ, t)) . (15)

The optimising θ∗ in (15) is the positive root of

∂

∂θ
ψQ(θ, t) = x, (16)

and is called the optimal tilting parameter.

3. The sequence of scaled variables (Qn(t)/n) converges in probability to its ‘most

likely’ mean m(t) = E[Qn(t)/n] = λ
∫ t

0 G(s) ds:

lim
n→∞

P (|Qn(t)/n−m(t)| < ǫ) = 1. (17)

4. A large deviations for the sequence of scaled variables (Qn(t)/n) holds:

lim
n→∞

1

n
logP (Qn(t)/n ≥ x ) = −J2(t, x) (x > m(t)). (18)

The limits in (14), (17) and (18) exist for the queueing processes we consider in

this paper, see Glynn (1995) for the exact formulation of the conditions. We need

the following lemma before proving the large deviations for the first passage time

probabilities ℓn = P (Tn(nx) ≤ t).

Lemma 6. The rate function J2(t, x) is decreasing in t.
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Proof. Denote the optimal tilting parameter θ∗ as θ(t), and recall that x is a con-

stant.

d

dt
J2(t, x) = θ′(t)x−

d

dt
ψQ(θ(t), t)

= θ′(t)x−
∂

∂θ
ψQ(θ, t)|θ=θ(t) θ

′(t) −
∂

∂t
ψQ(θ, t)|θ=θ(t)

= θ′(t)
(

x−
∂

∂θ
ψQ(θ, t)|θ=θ(t)

)

−
∂

∂t
ψQ(θ, t)|θ=θ(t)

(a)
= −

∂

∂t
ψQ(θ, t)|θ=θ(t)

=
d

dt

∫ t

0
ψ−1

U

(

− log
(

eθG(s) +G(s)
))

ds|θ=θ(t)

= ψ−1
U

(

− log
(

eθ(t)G(t) +G(t)
))

< 0.

The equality (a) follows from (16), and the final expression is negative because

θ(t) > 0 ⇒ eθ(t)G(t) +G(t) > 1

⇒ − log
(

eθ(t)G(t) +G(t)
)

< 0,

and because interarrival time U is a positive random variable.

Theorem 2.

lim
n→∞

1

n
log ℓn = −J2(t, x).

Proof. Apply the principle of the largest term (Dembo and Zeitouni, 1998, Lemma

1.2.15):

lim
n→∞

1

n
log ℓn = lim

n→∞

1

n
logP





⋃

s≤t

{Qn(s) ≥ nx}



 = − inf
s≤t

J2(s, x) = −J2(t, x).

In case of theM/M/∞ model we gave in Corollary 1 the sample path large deviations

rate of the ℓn as J1(φ) with φ the optimal path to overflow. Clearly it must hold

that J2(t, x) = J1(φ). This equality of the large deviations rate functions follows

also by working out their expressions.

We sketch the algorithm of Szechtman and Glynn (2002) for estimating the tail

probability P (Qn(t) ≥ nx ) in the general model.
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Algorithm 2.

1. Compute the optimal tilting parameter θ∗ in (16).

2. Simulate a sample path of Qn(s), 0 ≤ s ≤ t starting at Qn(0) = 0 from arrival

epoch to the next arrival epoch along the following two steps.

3. Let s be an arrival epoch. Then the next interarrival time is set U/n with U

drawn from an exponentially tilted distribution with probability density function

fα(u) = exp (αu− ψU (α)) f(u), (19)

where the tilting parameter α = α(s) is time dependent and solves

ψU (α) = − log
(

eθ
∗

G(t− s) +G(t− s)
)

. (20)

4. Let s be an arrival epoch. Then the arriving customer has a service time that

takes longer than t− s with probability

eθ
∗

G(t− s)

eθ∗G(t− s) +G(t− s)
.

5. When horizon t has been reached, check whether Qn(t) ≥ nx.

Notice that we do not have to simulate the service times but only whether or not

an arriving customer is still present at time t. Also notice that because θ∗ > 0, the

righthand side in (20) is negative, and thus this equation is also solvable for heavy-

tailed interarrival times. In that case the solution to (20) is a negative α for which

ψU (α) <∞. In other words, Algorithm 2 is feasible for light-tailed and heavy-tailed

interarrival and service times.

4 Importance sampling algorithms

In this section we present the three importance algorithms for the general G/G/∞

queue. The discussion on their efficiencies is deferred to Section 6.

4.1 Adapted Szechtman-Glynn algorithm

The first algorithm for the general model is an adaptation of Algorithm 2, which

cannot be applied directly for estimating the first passage time probabilities because
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it gives information on the number of busy servers only at the horizon time t. Thus

it cannot decide whether the target level nx might have been hit before t.

The adapted version is a classical discrete-event simulation of the queue by simu-

lating a sample path from event to event, where events are arrivals and departures.

The interarrival times are similar as in step 3 of Algorithm 2. The service time V for

the customer arriving at time s has a cdf G∗(v) that we define by its complementary

G∗(v) =
eθ

∗

G(v)

eθ∗G(v) +G(v)
. (21)

Sampling from G∗ is done as in the inverse transform method, by generating y from

uniform U(0, 1) and solving G∗(v) = y (for v). After rewriting we obtain that we

have to solve (for v)

G(v) =
y

eθ∗(1 − y) + y
.

The algorithm follows in detail.

Algorithm 3. [SG]

1. Compute the optimal tilting parameter θ∗ in (16).

2. Simulate a sample path of Qn(s), s ≥ 0 starting at Qn(0) = 0 from event to event

until either time horizon t has reached, or Qn(s) ≥ nx, whatever comes first.

3. Let s be an arrival epoch. Then the next interarrival time is set U/n with U drawn

from the distribution with probability density function given in (19) in Algorithm

2.

4. Let s be an arrival epoch. Then the arriving customer receives service time V

drawn from cdf G∗ given above in (21).

5. No action, i.e., no rescheduling, is taken after a departure event.

Notice that a customer arriving at time s is still present at time t with probability

P IS(V > t− s) = G∗(t− s) =
eθ

∗

G(t− s)

eθ∗G(t− s) +G(t− s)
,

which coincides with step 4 in Algorithm 2. For the same reasons as we mentioned

with respect to Algorithm 2, Algorithm 3 is feasible for light-tailed and heavy-tailed

interarrival and service times.
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4.2 Adapted M/M/∞ algorithms

The second algorithm in this section uses the optimal tilting parameters of Algorithm

1 for the M/M/∞ model. This is based on the intuition that in the long-run the

stationary distributon in the M/G/∞ model is insensitive for the higher moments

of the service duration. In the M/M/∞ model, the interarrival time and all service

times are rescheduled after each event, however, this is not feasible to execute in the

general model, because there is no memoryless property.

Algorithm 4. [MM]

1. Compute the tilting function θ(s) in (4).

2. Simulate a sample path of Qn(s), s ≥ 0 starting at Qn(0) = 0 from event to event

until either time horizon t has reached, or Qn(s) ≥ nx, whatever comes first.

3. Let s be an arrival epoch. Then the next interarrival time is set U/n with U

drawn from an exponentially tilted distribution with rate λeθ(s), i.e., the density

function is

fα(u) = exp (αu− ψU (α)) f(u), (22)

and the tilting parameter α solves ψ′
U (α) = e−θ(s)/λ.

4. Let s be an arrival epoch. Then the arriving customer receives a service time V

drawn from an exponentially tilted distribution with rate µe−θ(s), i.e., the density

function is

gβ(v) = exp (βv − ψV (β)) g(v), (23)

and the tilting parameter β solves ψ′
V (β) = eθ(s)/µ.

5. No action, i.e., no rescheduling, is taken after a departure event.

Here we notice that the tilting parameters are always α < 0, β > 0, and thus the

interarrival time U may have a heavy-tailed distribution, the service time V must

be light tailed.

Also we consider an approximation of Algorithm 4 by partitioning the interval

[0, t] into M subintervals and applying the same tilting parameters αm (for interar-

rival times) and βm (for service times) to all arrival instants in the m-th interval.

Algorithm 5. [MMint]

1. Compute the tilting function θ(s) in (4).
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2. Let I1, I2, . . . , IM be a partition of [0, t] into M subintervals of equal size, and let

tm be the midpoint of the m-th subinterval. For each subinterval Im determine

tilting parameters αm and βm by solving

ψ′
U (αm) =

e−θ(tm)

λ
, ψ′

V (βm) =
eθ(tm)

µ
. (24)

3. Simulate a sample path of Qn(s), s ≥ 0 starting at Qn(0) = 0 from event to event

until either time horizon t has reached, or Qn(s) ≥ nx, whatever comes first.

4. Let s be an arrival epoch in the m-th subinterval Im. Then the next interarrival

time is set U/n with U drawn from the exponentially tilted distribution with tilting

parameter αm, and any arriving customer receives service time V drawn from an

exponentially tilted distribution with tilting parameter βm.

5. No action is taken after a departure event.

4.3 A cross-entropy algorithm

Empirically we found that the algorithms of Sections 4.1 and 4.2 perform not so well

in case of highly variable interarrival times or service times, see also our Section 6

with the simulation results. In this section we consider the application of the cross-

entropy method for improving the tilting vectors α = (αm)M
m=1 and β = (βm)M

m=1 of

Algorithm 5 in such cases. In the next section we consider the heavy-tailed case.

We denote the importance sampling probability measure by Pα,β when the interar-

rival times (service times) are exponentially tilted using tilting parameters αm (βm).

The partitioning of [0, t] into M subintervals of equal size is taken to be fixed throug-

hout this section. The cross-entropy method minimises the Kullback-Leibler diver-

gence of the zero-variance measure P ∗ from this parameterised family of probability

measures Pα,β (see Rubinstein and Kroese, 2004). This means the following. Recall

Yn = 1{Tn(nx) ≤ t} the indicator of the rare event. Under the original probability

measure P we have ℓn = E [Yn]. In this way one may view Yn as an estimator based

on a single sample. Consider a random realisation of the process Qn(s), 0 ≤ s ≤ t,

generated under an importance sampling algorithm Pα,β . Its associated likelihood

is denoted by dPα,β(Qn). Before we shall calculate the likelihood, we notice that

the likelihood ratio is denoted and defined by L(Qn;α, β) = dP (Qn)/dPα,β(Qn),

and thus we have the unbiasedness property

ℓn = Eα,β [L(Qn;α, β)Yn] .
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We reason similarly for the zero-variance measure P ∗ for which

ℓn = E∗ [L∗(Qn)Yn] and Var∗[L∗(Qn)Yn] = 0.

The zero-variance measure P ∗ is not parameterised, but we might solve

inf
α,β

∫

log
dP ∗

dPα,β
dP ∗ = inf

α,β

∫

dP ∗

dP
log

dP ∗

dPα,β
dP.

This comes down to solving the following program (see Rubinstein and Kroese,

2004):

max
α,β

E
[

Yn log dPα,β(Qn)
]

, (25)

where the expectation is taken w.r.t. the original measure P . Because of the indepen-

dence of the interarrival and service processes we can write down the log likelihood

of a sample path. Denote by Nm the number of arrivals during subinterval Im, with

realised interarrival times Uj/n and service times Vj , and their associated densities

given in (22) and (23), respectively. Then

log dPα,β(Qn) =
M
∑

m=1

Nm
∑

j=1

(

log nfαm(Uj) + log gβm(Vj)
)

=
M
∑

m=1

Nm
∑

j=1

(

log n+ αmUj − ψU (αm) + log f(Uj) + βmVj − ψV (βm) + log g(Vj)
)

.

(26)

The maximum likelihood program (25) is solved by considering its first order con-

dition (FOC). Suppose that the optimising parameter αm is restricted on (−∞, Cα]

for some positive finite Cα in the domain of ψU . Then 0 < ψ′
U (αm) ≤ ψ′

U (Cα) <∞

because the cumulant generating function is increasing and convex. From (26) we

see that

∣

∣

∣

∣

∂

∂αm
Yn log dPα,β(Qn)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Yn

Nm
∑

j=1

(

Uj − ψ′
U (αm)

)

∣

∣

∣

∣

∣

∣

≤

Nm
∑

j=1

Uj +Nmψ
′
U (Cα),

with

E





Nm
∑

j=1

Uj +Nmψ
′
U (Cα)



 = (E[U ] + ψ′
U (Cα))E[Nm] <∞.

The same argument holds for the optimising parameter βm. We assume that the

boundary values Cα and Cβ are large enough so that the interchange of expectation
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and differentation in the FOC is allowed, which yields for m = 1, . . . ,M :

∂

∂αm
E
[

Yn log dPα,β(Qn)
]

= 0 ⇔ ψ′
U (αm) =

E
[

Yn

∑Nm

j=1 Uj

]

E [YnNm]

∂

∂βm
E
[

Yn log dPα,β(Qn)
]

= 0 ⇔ ψ′
V (βm) =

E
[

Yn

∑Nm

j=1 Vj

]

E [YnNm]
.

(27)

This solution to the FOC is estimated by simulation. Notice that the expectations

in (27) are with respect to the original probability P and that they involve the

rare event (via Yn), thus we need to simulate with importance sampling densities.

The idea is to do this iteratively with changes of measure Pα(r),β(r)
and to use the

equations (27) to update the parameters α
(r)
m , β

(r)
m . Furthermore, the target level

nx is updated adaptively in these iterations by setting it at a level nx(r) where a

fraction of at least ρ of all samples gives overflow before (or at) target horizon t.

This is the usual implementation of the cross-entropy algorithm as in Rubinstein

and Kroese (2004). Hence we obtain the following algorithm.

Algorithm 6. [CE]

1. Choose initial α
(0)
m and β

(0)
m , m = 1, . . . ,M ; r = 0.

2. Simulate k sample paths of {Qn(s) : 0 ≤ s ≤ t} with tilted interarrival and service

time distributions with tilting parameters α
(r)
m and β

(r)
m , respectively, and record

the maximum attained level Si of each path i = 1, . . . , k.

3. Order the attained levels to get S(1) ≤ S(2) ≤ · · · ≤ S(k). Set the target level

nx(r) = min
(

nx, S([(1−ρ)k])

)

, i.e., Yn = 1{Tn(nx(r)) ≤ t}.

4. Use the same k samples to estimate the expections E [YnNm], E
[

Yn

∑Nm

j=1 Uj

]

,

and E
[

Yn

∑Nm

j=1 Vj

]

.

5. Find the updated α
(r+1)
m and β

(r+1)
m by solving (27).

6. Set r = r + 1 and repeat from 2 until convergence.

Discussion:

• For the initial parameters α
(0)
m and β

(0)
m we took the parameters given by (24)

in Algorithm 5. For the succesfull fraction ρ we took 5%.
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• Convergence: in steps 4 and 5 we actually execute a substition rule of the form

α(r+1)
m = (ψ′

U )−1





E(r)
[

L(Qn;α(r), β(r))Yn

∑Nm

j=1 Uj

]

E(r)
[

L(Qn;α(r), β(r))YnNm

]



 ,

where E(r) means that the expectation is taken w.r.t. Pα(r),β(r)
. Similarly for

the β
(r)
m parameters. Thus the cross-entropy iteration is a substitution iteration

of a fixed point equation. We could not prove analytically the convergence

of the substitution rule, but we found empirically that in case of the finite-

variance service times a few iterations (upto 10) was sufficient, whereas in

case of infinite variability (Pareto distributed service times) the number of

iterations could increase up to around 20.

5 Pareto distributed service times

In this section we assume that the service-time distributions are Pareto with form

parameter κ > 0 and scale parameter γ > 0. The density function is

g(v) =
κ

γ

(

1 +
v

γ

)−κ−1

(v ≥ 0).

Specifically we consider the case with 1 < κ ≤ 2 for which the mean service

E[V ] = γ/(κ−1) is finite with infinite variance. We apply the cross-entropy method

for finding the importance sampling densities on the subintervals Im. However, ex-

ponentially tilted versions of the density with positive tilting parameter β are not

defined because the moment generating function does not exist. Instead, we take

as importance sampling density on the m-th subinterval a Pareto density with form

parameter κm and scale parameter γm. The interarrival densities during Im remain

as before, i.e., exponentially tilted with tilting parameter αm. Thus, the maximum

likelihood problem (25) becomes

max
α,κ,γ

E [Yn log dPα,κ,γ(Qn)] ,

where the optimisation parameters are the vectors α = (αm)M
m=1, κ = (κm)M

m=1

γ = (γm)M
m=1. The log likelihood of a sample path is, cf. (26),

log dPα,κ,γ(Qn) =
M
∑

m=1

Nm
∑

j=1

(log nfαm(Uj) + log gκm,γm(Vj)) .
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The first order conditions become

∂

∂αm
E [Yn log dPα,κ,γ(Qn)] = 0 ⇔ ψ′

U (αm) =
E
[

Yn

∑Nm

j=1 Uj

]

E [YnNm]
(i)

∂

∂κm
E [Yn log dPα,κ,γ(Qn)] = 0 ⇔ κm =

E[YnNm]

E
[

Yn

∑Nm

j=1 log
(

1 +
Vj

γm

)] (ii)

∂

∂γm
E [Yn log dPα,κ,γ(Qn)] = 0 ⇔

1

κm + 1
=
E
[

Yn

∑Nm

j=1
Vj

γm+Vj

]

E[YnNm]
. (iii)

Equation (i) gives the tilting parameter αm for the interarrival density. From equa-

tion (ii) and (iii) we eliminate κm leaving an equation in γm which we can solve

numerically by bisection. Then any of (ii) and (iii) gives κm. The cross-entropy

iteration starts with the original parameters.

6 Numerical results

We have executed simulation experiments for various combinations of types of dis-

tribution functions F of interarrival time U and of distribution function G of service

time V : for arrivals we took Exponential and Hyperexponential distributions; for

services we considered Exponential, Deterministic, Gamma, Coxian (two phases),

and Pareto (finite mean, infinite variance). Their associated parameters are obtai-

ned by fitting the first two moments using mean and squared coefficient of variation

(Tijms, 2003, page 448). For the Pareto distribution we fit just the first moment. It

is not possible to implement Algorithms 4 and 5 for the Pareto case as explained in

Section 5.

The model parameters are

E[U ] = 1, E[V ] = 5, x = 6, t = 10,

and the number of simulated sample paths (for the estimation of ℓn) is in all ex-

periments k = 50000. In the cross-entropy iterations we took 5000 samples. After

each simulation experiment we collect three (estimated) performance measures of

the importance sampling estimator Y ∗
n(k) of ℓn based on k samples:

• RHW: the relative half width of the 95% confidence interval

1.96

√

VarIS[Y ∗
n (k)]/Y ∗

n (k).
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• RAT: the logarithmic efficiency ratio, cf. (1),

logEIS[Y ∗
n (k)2]/ logEIS[Y ∗

n (k)].

• EFF: the (−logarithm of the) effort which takes into account both the variance

of the estimator and the total execution time of the simulation (including the

iterations in the cross-entropy algorithm):

− log10

(

VarIS[Y ∗
n (k)] × CPU[Y ∗

n (k)]
)

.

Better performance is obtained by smaller RHW, higher RAT, and larger EFF. In

the cross-entropy method we included the time needed to execute the cross-entropy

iterations.

1. Poisson arrivals, exponential service times: the M/M/∞ case. Here we com-

pare the importance sampling estimates ℓISn of our algorithm of Section 2 with

the numerical values ℓNUM
n and with the large deviations approximations ℓLD

n .

The numerical values are obtained by numerical inversion of the Laplace trans-

form (Keilson 1979). In Figure 2 we have plotted the logarithm of these values

for scalings up to n = 200. The constant slope of the line indicates the ex-

ponential decay of the probability. The deviation for scalings larger than 150

reflects the appearance of large numerical errors.

50 100 150 200
−25

−20

−15

−10

−5

0
log10 of numerical values

scale n

Figure 2. The log10 of the numerical values ℓNUM
n for scalings up to

n = 200. For scalings larger than 150 the values become less accurate

due to numerical errors.

The large deviations approximations are obtained from Theorem 2 by

ℓLD
n = e−nJ2(t,x).
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The comparisons in Figure 3 are the relative differences

∣

∣ℓNUM
n − ℓISn

∣

∣

ℓNUM
n

and

∣

∣ℓLD
n − ℓISn

∣

∣

ℓLD
n

Furthermore, we have estimated the efficiency ratios RAT which should con-

verge to 2 because the importance sampling algorithm is asymptotic optimal.
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50 100 150 200
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Figure 3. Left: relative differences between importance sampling and

numerical inversion resp. large deviations for scalings up to n = 200.

Right: the estimated logarithmic efficiency ratios.

Notice the large differences between the importance sampling estimates and

the numerical values when the scaling factors n are large. A reason might be

that numerical errors in the numerical procedures become a crucial issue.

2. Poisson arrivals, Deterministic service times (c2V = 0), Gamma service times

with c2V = 0.5, Coxian service times with c2V = 4, and Pareto service times with

infinite variance. We chose 20 intervals in Algorithms 5 and 6, 5000 samples

per CE iteration, and CE was iterated until two consecutive solution vectors

differ less that 0.1 (in 2-norm).

3. Hyperexponential arrivals with c2U = 5, Gamma service times with c2V = 0.5,

Exponential service times, Coxian service times with c2V = 4, and Pareto

service times with infinite variance. We chose 20 intervals in algorithm 5 and

6, 5000 samples per CE iteration, and CE was iterated until two consecutive

solution vectors differ less that 0.1 (in 2-norm).

The simulation results are summarised in the Table 1 (RHW for exponential in-

terarrivals), Table 2 (RHW for hyperexponential interarrivals), Table 3 (RAT for
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both cases), and Table 4 (EFF for both cases). A blank in the tables means that

there were not enough observations of the rare event for that specific case. From

these experiments we see that Algorithm 3 (adapted Szechtman-Glynn) gives good

performance for low-variable service times, but that RHW degrades when the vari-

ability grows. Algorithms 4 and 5 (using the M/M/∞ parameters) are applicable

for low-variable service times but perform in most cases worse than Algorithm 3.

Algorithm 6 (cross-entropy) gives in all cases excellent results and outperforms (in

most cases) the other algorithms.

The cross-entropy algorithm is based on heuristics, and the importance sampling

densities that are finally used, are obtained after simulation experiments. Hence, we

have no explicit representation of these denstities, and this makes that we cannot

decide upon the asymptotic optimality of its associated estimator by an analytical

approach. Instead we assess the optimality empirically by the ratio RAT. Figure 4

plots these ratios in the model with Poisson arrivals and Coxian ditributed service

times. We show also these ratios obtained by the (adapted) Szechtman and Glynn

algorithm. The scale parameter n has been increased until n = 200 in which case

ℓn ≈ 10−112. The ratios in both algorithms tend to ‘creep’ to 2, and this indicates

asymptotic optimality.

50 100 150 200
1.8

1.85

1.9

1.95

2
Coxian service

scale n

CE alg.
SG alg

Figure 4. The estimated logarithmic efficiency ratios obtained by Al-

gorithm 3 (SG) and Algorithm 6 (CE) in case of Poisson arrivals and

Coxian distributed services.
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RHW

n ℓ̂n Alg.3 Alg.4 Alg.5 Alg.6

[SG] [MM] [MMint] [CE]

Deterministic with c2V = 0

100 1.447e-004 0.1840 0.0265 0.0264 0.0265

200 1.595e-008 0.2241 0.2475 0.1859 0.0798

300 1.504e-012 0.5092 0.2968 0.2966 0.1316

400 9.865e-017 0.5937 0.5099 0.5620 0.2355

500 9.175e-021 0.2974 0.2412 0.9042 0.1732

Gamma with c2V = 0.5

50 1.063e-004 0.0496 0.0231 0.0223 0.0232

100 2.992e-008 0.1199 0.0553 0.1026 0.0472

150 8.881e-012 0.2613 0.5384 0.1279 0.0669

200 2.944e-015 0.1778 0.2261 0.2078 0.0869

250 9.145e-019 0.4129 0.4205 0.3093 0.0995

Coxian with c2V = 4

10 1.626e-006 0.0883 0.3500 0.1593 0.0299

20 4.918e-012 0.2684 0.0276

30 1.662e-017 0.5388 0.0538

40 6.152e-023 0.4424 0.0473

50 2.248e-028 0.5535 0.0465

Pareto with c2V = ∞

5 5.941e-004 0.0787 0.0252

10 4.065e-007 0.1368 0.0522

15 2.856e-010 0.4622 0.0598

20 1.996e-013 0.3557 0.1929

25 1.242e-016 0.4233 0.1767

Table 1. The relative halfwidths of the four importance sampling algo-

rithms for Poisson arrivals.
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RHW

n ℓ̂n Alg.3 Alg.4 Alg.5 Alg.6

[SG] [MM] [MMint] [CE]

Gamma with c2V = 0.5

100 1.054e-002 0.0103 0.2921 0.3292 0.0163

200 2.538e-004 0.0145 0.4541 0.4200 0.0784

300 6.568e-006 0.0179 0.8641 0.3981 0.0896

400 1.793e-007 0.0223 1.7924 0.3584 0.0435

500 4.938e-009 0.0278 1.6069 1.1525 0.0679

Exponential with c2V = 1

100 1.589e-004 0.0167 0.1955 0.1108 0.0126

200 7.207e-008 0.0299 0.5796 0.2207 0.0170

300 3.689e-011 0.0443 0.3472 0.5233 0.0248

400 1.965e-014 0.0788 0.4530 0.9041 0.0301

500 9.686e-018 0.0927 1.0168 0.8494 0.0806

Coxian with c2V = 4

20 2.976e-005 0.1946 0.2030 0.2008 0.0167

40 1.682e-009 0.4716 0.0223

60 1.076e-013 1.0970 0.0229

80 7.589e-018 0.0539

100 5.180e-022 0.0639

Pareto with c2V = ∞

20 8.131e-006 0.0684 0.0394

30 2.749e-008 0.1474 0.0299

40 9.216e-011 0.2988 0.1157

50 3.136e-013 0.2191 0.1523

60 7.911e-016 0.5032 0.2050

Table 2. The relative halfwidths of the four importance sampling algo-

rithms for hyperexponential arrivals.
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RAT RAT

n Alg.3 Alg.4 Alg.5 Alg.6 n Alg.3 Alg.4 Alg.5 Alg.6

[SG] [MM] [MMint] [CE] [SG] [MM] [MMint] [CE]

Deterministic with c2V = 0 Gamma with c2V = 0.5

100 1.31 1.74 1.74 1.73 100 1.81 0.48 0.40 1.67

200 1.65 1.62 1.66 1.75 200 1.84 1.16 1.20 1.47

300 1.70 1.74 1.74 1.80 300 1.86 1.33 1.48 1.61

400 1.77 1.78 1.77 1.85 400 1.87 1.44 1.66 1.79

500 1.85 1.85 1.80 1.87 500 1.87 1.54 1.59 1.78

Gamma with c2V = 0.5 Exponential with c2V = 1

50 1.62 1.77 1.78 1.77 100 1.82 1.28 1.42 1.87

100 1.70 1.79 1.71 1.80 200 1.85 1.49 1.62 1.90

150 1.73 1.67 1.79 1.84 300 1.86 1.71 1.68 1.91

200 1.82 1.81 1.81 1.86 400 1.86 1.76 1.72 1.92

250 1.82 1.81 1.83 1.88 500 1.88 1.78 1.79 1.88

Coxian with c2V = 4 Coxian with c2V = 4

10 1.66 1.46 1.46 1.81 20 1.41 1.40 1.40 1.85

20 1.74 1.91 40 1.62 1.90

30 1.79 1.91 60 1.70 1.93

40 1.85 1.93 80 1.91

50 1.88 1.95 100 1.92

Pareto with c2V = ∞ Pareto with c2V = ∞

5 1.41 1.70 20 1.65 1.74

10 1.63 1.76 30 1.67 1.85

15 1.64 1.82 40 1.69 1.78

20 1.75 1.79 50 1.78 1.80

25 1.79 1.84 60 1.76 1.82

Table 3. The efficiency ratios of the four importance sampling algorithms

for Poisson arrivals (left) and hyperexponential arrivals (right).
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EFF EFF

n Alg.3 Alg.4 Alg.5 Alg.6 n Alg.3 Alg.4 Alg.5 Alg.6

[SG] [MM] [MMint] [CE] [SG] [MM] [MMint] [CE]

Deterministic with c2V = 0 Gamma with c2V = 0.5

100 7.56 9.06 9.22 9.16 100 5.79 2.87 3.17 5.61

200 15.18 14.15 14.50 15.37 200 8.31 6.26 6.93 7.06

300 21.61 21.89 21.99 22.56 300 11.02 9.20 11.06 9.69

400 29.90 29.26 29.14 30.61 400 13.72 12.93 16.94 12.99

500 38.55 38.70 36.95 38.18 500 16.46 16.23 17.36 15.49

Gamma with c2V = 0.5 Exponential with c2V = 1

50 8.80 9.95 10.09 9.95 100 9.40 6.68 7.83 9.37

100 14.82 15.86 15.29 15.94 200 15.08 12.25 13.96 15.27

150 20.87 20.33 21.92 22.38 300 20.98 20.21 19.87 21.18

200 28.39 28.24 28.37 28.75 400 26.74 26.76 25.90 27.29

250 34.32 34.49 35.02 35.55 500 32.94 33.98 34.20 32.73

Coxian with c2V = 4 Coxian with c2V = 4

10 12.62 11.67 8.79 13.49 20 8.94 8.61 9.59 11.38

20 22.50 24.48 40 17.03 19.17

30 32.90 34.39 60 25.71 27.27

40 45.13 45.36 80 34.65

50 56.97 56.02 100 42.60

Pareto with c2V = ∞ Pareto with c2V = ∞

5 8.41 8.57 20 11.36 10.83

10 14.09 14.01 30 15.43 15.89

15 18.98 20.20 40 19.41 19.91

20 25.74 25.37 50 24.97 24.43

25 31.78 31.78 60 28.73 29.08

Table 4. The efforts of the four importance sampling algorithms for

Poisson arrivals (left) and hyperexponential arrivals (right).

7 Conclusion

In this paper we have developed importance sampling algorithms for the simulation

of first-passage time probabilities in the G/G/∞ queueing model. The algorithms

that were based on the sample path large deviations in the M/M/∞ model have

small applicability and performed poorly in case of highly variable service times.
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An adaptation of the algorithm of Szechtman and Glynn (2002) seemed to overco-

me this difficulty and gave in most cases good performance—even for Pareto ser-

vers with infinite variance. We found that the cross-entropy based algorithm gave

the best performance although we are not sure whether the associated estimator is

asymptotically optimal in all cases. Further investigations on this, as well as on the

convergence of the cross-entropy iterations are needed.
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Appendix A (Proofs of Lemmas 1 and 2)

Lemma 1. Recall the tilting function θ(s) in (4) and the optimal path φ(s) to

overflow in (8). For all 0 ≤ s ≤ t

λ
(

eθ(s) − 1
)

+ φ(s)µ
(

e−θ(s) − 1
)

= constant,

with the constant equal to the c in (8).

Proof. Substitute q = φ(s) in the cumulant generating function (2):

ψ(θ, φ(s)) = λ
(

eθ − 1
)

+ φ(s)µ
(

e−θ − 1
)

.

Because ψ is convex in its first argument θ, we can solve the local rate function (3)

by its first order condition

∂

∂θ
ψ(θ, φ(s))|θ=θ(s) = φ′(s). (28)

The optimal path φ(s) satisfies (see Shwartz and Weiss, 1995, (C.3)):

I(φ(s), φ′(s)) − φ′(s)
∂

∂φ′(s)
I(φ(s), φ′s) = constant.

Working out the differentation and using (28) we get

I(φ(s), φ′(s)) − φ′(s)θ(s) = constant.

And because I(φ(s), φ′(s)) = φ′(s)θ(s) − ψ(θ(s), φ(s)), we find that ψ(θ(s), φ(s)) is

a constant with by definition

ψ(θ(s), φ(s)) = λ
(

eθ(s) − 1
)

+ φ(s)µ
(

e−θ(s) − 1
)

.
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The constant is obtained by substituting s = 0 for which we have φ(0) = 0, and

φ′(0) = c+ λ. Thus,

constant = ψ(θ(0), φ(0)) = λ
(

eθ(0) − 1
)

= λ

(

c+ λ+
√

(c+ λ)2

2λ
− 1

)

= c.

Lemma 2. The large deviations rate function J1(φ) of (6) satisfies

J1(φ) =

∫ t

0
θ(s)φ′(s) ds− ct.

Proof. In the proof of Lemma 1 we found that the local rate function satisfies

I(φ(s), φ′(s)) = θ(s)φ′(s) − g(φ(s), θ(s)) = θ(s)φ′(s) − c.

Thus we get the statement immediately by noticing that the large deviations rate

function is J1(φ) =
∫ t

0 I(φ(s), φ′(s)) ds.
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