
The cross-entropy method for power system
combinatorial optimization problems

Damien Ernst ∗, Mevludin Glavic †, Guy-Bart Stan ‡, Shie Mannor § and Louis Wehenkel ¶
∗ Supélec, France, Email: damien.ernst@supelec.fr

† University of Liège, Belgium, Email: glavic@montefiore.ulg.ac.be
‡ University of Cambridge, United Kingdom, Email: gvs22@eng.cam.ac.uk

§ McGill University, Canada, Email: shie.mannor@mcgill.ca
¶ University of Liège, Belgium, Email: l.wehenkel@ulg.ac.be

Abstract—We present an application of a cross-entropy based
combinatorial optimization method for solving some unit com-
mitment problems. We report simulation results and analyze,
under several perspectives (accuracy, computing times, ability to
solve efficiently large-scale problems), the performances of the
approach.
Keywords: cross-entropy method, combinatorial optimiza-

tion, power systems.

I. INTRODUCTION

Many problems faced by power system engineers can be
formalized as combinatorial optimization problems. As exam-
ples, we mention transmission network expansion planning
problems where one needs to evaluate the best possible
combination of single investments [16], the unit commitment
problem [11], the optimal placement of phasor measurements
units for state estimation [12] or the design of special protec-
tion schemes [13].
We can write a pure combinatorial optimization problem

using the generic form:

u∗ = arg max
u∈U

S(u), (1)

where S(·) denotes the performance function and U the
discrete search space of the optimization problem. Typi-
cally, U is of large dimension − that is, an element u =
(u[1], u[2], . . . , u[n]) of the search space is described by a
large number of components. Solving a combinatorial problem
through simple enumeration has a complexity which grows
exponentially with the dimension of the search space, making
such an approach hardly applicable when dealing with large
dimensional U .
To curb this exponential growth problem, two types of

strategies are commonly adopted. The first one exploits the
particular structure of the performance function S(u) to design
’customized algorithms’. We cite for example the integer
programming problems [7] which are particular instances of
(1) where the performance function is given by S(u) =
c1u[1] + c2u[2] + . . . + cnu[n] and for which various ’cus-
tomized techniques’, as for example those based on cutting
planes [2] or branch-and-bound [20], have been developed.
Randomized algorithms such as genetic algorithms [9],

simulated annealing [1], ant colony optimization [5], tabu

search [8] or nested partitioning [19] constitute the second
family of strategies. These are iterative algorithms for which
the solution given at the next iteration is a ’stochastic refine-
ment’ of the current solution. They have been shown to be
able to efficiently identify good solutions of numerous real-
world problems and have gained an immense popularity in
the scientific community. In particular, references [3], [11],
[12], [13], [14], [16], [21], are only a small sample of the
success met by these methods when applied to power system
combinatorial problems.
Around 1997, the so-called Cross-Entropy (CE) method was

proposed by R.Y. Rubinstein for solving rare-event simulation
problems [17] and was afterwards extended to solving combi-
natorial problems. Several randomized optimization algorithms
based on the CE method have been proposed in the literature
and have been shown to lead to good performances on
numerous optimization problems, often outperforming other
randomized algorithms [18].
While applications of these CE-based techniques to various

fields of engineering have already been reported (see, e.g. [4],
[10]), they have, to our best knowledge, not been applied yet
to power systems.
In this paper, we introduce the cross-entropy method to

the power system community by illustrating its application on
problems for which one has to compute short-term production
plans to generate electricity at minimal cost. These problems
are commonly referred to as unit commitment problems.
Based on the simulation results, we also will analyze, under
several perspectives (accuracy, computing times, ability to
solve efficiently large-scale problems), the performances of
the CE-based optimization algorithm.
The paper is organized as follows. Section II focuses on

the CE method and describes a practically implementable
CE-based combinatorial algorithm. Section III discusses the
results obtained by running this algorithm on unit commitment
problems. Finally, Section IV concludes and the Appendix
provides a detailed description of the benchmark problem
used.

II. THE CE METHOD

We start this section by describing the CE method in the
rare-event framework. Afterwards, we explain how to adapt

1290978-1-4244-2190-9/07/$25.00 ©2007 IEEE PowerTech 2007

algorithms developed in this framework for solving combina-
torial optimization problems. Finally, we describe a practically
implementable and well-performing CE-based combinatorial
algorithm for problems whose search spaces are n-dimensional
binary spaces, i.e. U = {0, 1}n.
The material of this section is largely borrowed from [17]

to which we refer the reader for a complement of information.

A. The CE method for rare event simulation

LetX be a random variable taking its value in some discrete
space X with a probability mass function (pmf) f(·), S′(·) be
a real-value function defined on X and γ be a real number.
In the rare-event simulation context, one needs to estimate the
probability of occurrence l of an event {S′(X) ≥ γ}, i.e. to
estimate the expression EX∼f(·)

[
I{S′(X)≥γ}

]
.1

In rare-event simulation problems, this probability is ex-
tremely low, say less than 10−6, and estimating l with enough
accuracy by relying on a Crude Monte-Carlo (CMC) estimator

l̂ =
1

N

N∑
j=1

I{S′(Xj)≥γ} (2)

requires to draw a considerably large sample X1, X2, . . .,
XN from f(·). For example, for estimating l = 10−6, with
a relative error κ = 0.01, a sample size of N � 1

κ2l
= 1010

is required, which shows that it is generally computationally
meaningless to estimate small probabilities via CMC.
An alternative to CMC is based on importance sampling.

With such an approach, a random sample X1, X2, . . ., XN

is drawn from an importance sampling pmf g(·) and the
probability of occurrence of the event is estimated via the
following unbiased estimator

l̂ =
1

N

N∑
j=1

I{S′(Xj)≥γ}
f(Xj)

g(Xj)
. (3)

The best way to estimate l is to adopt the ’ideal’ importance
sampling pmf

g∗(X) =
I{S′(X)≥γ}f(X)

l
. (4)

Since l is constant using this ’ideal’ importance sampling
(4) would lead to an estimator (3) having a zero variance.
Consequently, we would need to produce only a one element
sample to determine l.
The obvious difficulty is that g∗(·) depends on the unknown

parameter l.
The main idea of the CE method for rare event simulation is

to find inside an a priori given set G of pmfs defined on X , the
element g(·) such that its distance with the ’ideal’ sampling
distribution is minimal.
A particularly convenient measure of distance between two

pmfs a(·) and b(·) on X is the Kullback-Leibler distance,

1The function I{logical expression} is defined by
I{logical expression} = 1 if logical expression = true and 0 otherwise.
The expression EX∼f(·)

ˆ
I{S′(X)≥γ}

˜
can be written equivalently asP

X∈X I{S′(X)≥γ}f(X).

which is also termed the cross-entropy between a(·) and b(·).
The Kullback-Leibler distance, which is not a “distance “ in
the formal sense since it is for example not symmetric, is
defined as follows:

D(a, g) = EX∼a(·)

[
ln

a(X)

b(X)

]
(5)

The CE method reduces the problem of finding an appropri-
ate importance sampling pmf to the following optimization
problem:

argmin
g∈G

D(g∗, g) . (6)

One can show through simple mathematical derivations that
solving (6) is equivalent to solve:

argmax
g∈G

EX∼f(·)

[
I{S′(X)≥γ} ln g(X)

]
(7)

which does not depend explicitly on l anymore.
If l is not too small, CE-based algorithms for rare-event

simulations estimate a good solution of (7) by solving its
stochastic counterpart:

arg max
g∈G

M∑
j=1

I{S′(Xj)≥γ} ln g(Xj) (8)

where the sample X1, X2, . . ., XM is drawn according to
f(·). When l is too small, say l < 10−6, which is often the
case in rare-event simulation, the value of M one has to adopt
for having a ’good’ stochastic counterpart may be prohibitively
high and some specific iterative techniques need to be adopted
to solve (7). The use of these techniques is often equivalent to
solving a sequence of rare event problems using the same pmf
f(·) and function S′ but with increasing values of γ converging
to the value of γ related to the original problem.
Under some specific assumptions on X , f(·) and G, it is

possible to solve analytically the optimization problem (8).
This property is often exploited in the CE context.
For example, let us suppose that X = {0, 1}n and let us

denote by Bern(·, p) the n-dimensional Bernoulli pmf

Bern(X, p) = Πn
i=1p[i]X[i](1− p[i])1−X[i] (9)

where p is a vector of parameters belonging to the n-cube (i.e.,
[0, 1]n), and often referred to as the vector of probabilities
associated with the Bernoulli distribution, and where X [i] is
the ith component of the random variable X .
Then, one can show that if f(·) is a n-dimensional Bernoulli

pmf and G is the set of all n-dimensional Bernoulli pmfs, the
solution Bern(·, p∗) of (8) can be computed analytically:

p∗[i] =

∑M

j=1 I{S′(Xj)≥γ}Xj [i]∑M

j=1 I{S′(Xj)≥γ}

. (10)

1291

Input: A performance function S : U → R where U = {0, 1}n and two parameters: C and �.
Output: An element uoutput ∈ U .
Algorithm:
Step 1. Set t equal to 1 and the components pt[i] of the n-dimensional vector pt equal to 0.5.

Set nbElite equal to the largest integer inferior or equal to �× C × n. If nbElite < 1 then set nbElite to 1.
Step 2. Set Ut equal to an empty set and rt to an empty vector.
Step 3. Draw independently C × n elements according to the Bernouilli pmf Bern(·, pt) and set them in Ut.
Step 4. For every element u ∈ Ut, compute S(u) and add this value at the end of the vector rt.
Step 5. Order the vector rt in decreasing order and set γ̂t = rt[nbElite].
Step 6. If stopping conditions are met, then return uoutput = argmax

u∈U1∪U2∪...∪Ut

S(u) and stop. Otherwise go to Step 7.

Step 7. Set pt+1[i] =
P

u∈Ut
I{S(u)≥γ̂t}

u[i]

nbElite
for i = 1, 2, . . . , n and t← t + 1. Go to Step 2.

Fig. 1. A cross-entropy based combinatorial optimization algorithm for search spaces composed of vectors of binary variables.

B. From rare event simulation to combinatorial optimization

The main ideas of the CE algorithm for solving the com-
binatorial optimization problem described by Eqn (1) are
based on the following two observations. First, the event
{S(u) ≥ γ = S(u∗)}, where u is a random variable taking
its values in U with a pmf fu(·), tends to be a rare event.
For example, if fu(·) is a uniform pmf possessing a unique
maximum, the probability of this event is 1

#U . Second, when
solving this particular type of rare-event problem by using
a CE method, one generally obtains, as byproduct, a pmf
which is close to the ’ideal’ one, and, therefore, likely to
generate samples u for which the value of S(u) is close to
maximal. Based on these two observations, several practically
implementable randomized algorithms have been proposed.
These algorithms often exploit the following iterative

scheme. Since the value of S(u∗) is unknown, they start by
drawing a random sample U1 according to a pmf g1(·) given as
input of the algorithm (and often chosen as the uniform pmf)
and from this U1 compute γ1 = max

u∈U1

S(u). Afterwards, they

solve the rare-event simulation problem Eu∼g1(·)

[
I{S(u)≥γ1}

]
from which they deduce by solving expression (7), where the
set G is an input of the algorithm, a pmf g2(·). At the second
iteration, they use g2(·) to draw a new sample U2 from which
they deduce γ2 = max

u∈U2

S(u). Then, they solve the rare-event

simulation problem defined by g2(·), γ2 and U2. From the
solution of this rare event problem, they deduce a pmf g3(·).
By proceeding like this, they compute a sequence of pmfs
g1(·), g2(·), g3(·), By assuming, among others, that Ut

is large enough and gt not too far from the ’ideal’ sampling
distribution corresponding to the rare-event problem defined at
iteration t, these pmfs become more likely to generate samples
Ut having elements corresponding to high-values of S(·) when
t increases.

C. A practically implementable algorithm

Figure 1 gives the tabular version of a CE-based opti-
mization algorithm for combinatorial problems whose search
spaces are of the type U = {0, 1}n. This algorithm is based
on the iterative scheme described at the end of previous

subsection and is particularized to the case where the set G
is the set of all n-dimensional Bernoulli pmfs defined on U .
The algorithm solves the optimization problem (7) by relying
on its stochastic counterpart (8) whose solution is computed
analytically by exploiting (10).
There is however one notable difference between the it-

erative scheme adopted by the algorithm of Fig. 1 and the
one described in previous subsection. Indeed, the rare-event
problem the algorithm of Fig. 1 solves at iteration t does not
have a value of γ equal to γt = max

u∈Ut

S(u). Instead, this value

is equal to γ̂t with γ̂t defined in such a way that only a small
fraction � of the elements u ∈ Ut lead to a value S(u) larger
or equal to γ̂t. These elements having a value of S(u) ≥ γ̂t are
often referred to in the CE literature as the ’elite elements’ or
’elite samples’. The main reason for using γ̂t rather than γt to
define the rare-event problem solved at iteration t is to ensure
that this problem does not correspond to a too small value of
l. Indeed, if l is too small, one would be required to draw a
prohibitively large sample to have a stochastic counterpart (8)
whose solution is accurate enough.
We note also that the algorithm uses at iteration t the sample

Ut to define the stochastic counterpart (8) of (7).
The algorithm has two parameters C and �. The parameter

C determines the size of the samples Ut in a way that
#Ut = C × n. The rationale behind adopting samples Ut

whose cardinality is growing with n is that usually, the larger
the search space is, the larger the samples Ut one has to draw
for the algorithm to be able to output an element uoutput

corresponding to a high-value of the function S(·). We suggest
a default value for this parameterC = 10. As explained before,
the parameter � determines the number of ’elite samples’ and
we adopt for this parameter a default value of � = 0.1.
When the stopping conditions are met, whatever

they are, the algorithm returns the element
uoutput = argmax

u∈U1∪U2∪...∪Ut

S(u) which represents the best

elements among those which have been evaluated throughout
the course the algorithm.
We found out when carrying our simulations that the

sequence of Bernoulli pmfs Bern(·, p1), Bern(·, p2), . . . gen-

1292

erated by this algorithm was often converging in a relatively
small number of iterations to a degenerate pmf, that is a
pmf that assigns all the probability, i.e. probability 1, to a
single element of U . When convergence to a degenerate pmf
occurs, the algorithm can be stopped since it will only produce
identical degenerate pmfs afterwards.

III. SIMULATION RESULTS

In this section, we discuss some simulation results obtained
by running the CE-based optimization algorithm described on
Fig. 1 on an academic unit commitment problem.
We start by giving a description of the main characteristics

of this problem. Then, we comment on a typical single run
of this algorithm. And finally, we study the performances of
the algorithm for various sizes of this problem. All the results
have been generated by using the algorithm with its default
values: � = 0.1 and C = 10.

A. The benchmark unit commitment problem

The unit commitment problem is the problem of scheduling
at minimum cost the production of electricity under various
constraints. Many formulations of this problem have been
proposed (e.g., security constraint unit commitment problem
[6], profit-based unit commitment [15]). We adopt here a
simple formulation of this problem which, among others, has
no explicit constraints and assumes that the power produced by
a generator can only be either zero or maximal. We give, for
the sake of reproducibility of the results, a detailed description
of this benchmark unit commitment problem in the Appendix.
The problem has been stated in a way that ’its size’ depends

on a parameter n that represents both the number of generators
and the dimensionality of the combinatorial search space.
These generators are indexed by a number i (i = 1, 2, . . . , n)
and produce electrical power at a cost which grows linearly
with i. By assuming that n is a multiple of 10, one can show
that it is optimal to schedule only generators 1, 2, . . ., 8×n

10
(see the Appendix for more details).
The ith component of an element u =

(u[1], u[2], . . . , u[n]) ∈ U is binary and determines whether
the generator i is scheduled for production or not. It is equal
to 1 if the machine is scheduled and zero otherwise.

B. An illustration of a typical single run of the algorithm

Figure 2 describes a typical single run of CE-based com-
binatorial algorithm with its default values on the benchmark
unit commitment problem defined by n = 20. This leads to
a combinatorial optimization problem having a rather small
search space (#U = 1, 048, 576) and, therefore, for which we
could identify the optimal solution by relying on exhaustive
search. However, we found out that for illustrative purposes it
was more convenient to consider here a small value of n.
The first column of the table gives the iteration number t, the

next twenty columns the components of pt and the last one the
largest value that S(·) takes on Ut. As one can see, the pmfs
Bern(·, pt) have generated samples whose best elements are
leading to increasing values of S(·) when t starts increasing.

After a few iterations, the best element of Ut always leads
to a value of S(·) equal to −92210.5, which is actually the
maximum value S(·) can achieve over U . At iteration t =
6, the corresponding pmf (Bern(·, p6)) is a degenerate pmf
which assigns a probability 1 to the optimal element u∗ and
the algorithm is stopped.

C. Performances of the CE-based combinatorial algorithm

Stochastic optimization algorithms, such as the CE-based
combinatorial algorithm used in this paper, have essentially an
anytime behaviour − that is, they can return the best answer
possible even if they are not allowed to run to completion and
may improve on the answer if they are allowed to run longer.
When studying performance of such algorithms, one is usually
interested in establishing the relation that exists between the
quality of their answer and the time they are allowed to run
as well as in establishing how this relation evolves with the
size of the problem.
To illustrate the performances of the CE-based combinato-

rial algorithm on the benchmark unit commitment problem,
we have chosen to run simulations to determine for several
sizes n of the optimization problem (i) the relation that
represents the distance between the solution the CE-based
algorithm would provide if stopped after t iterations (ut =
argmaxu∈U1∪U2∪...∪Ut

S(u)) and the optimal solution (u∗)
(ii) the CPU time associated with an iteration of the algorithm,
which for a given size n of the optimization problem is
essentially constant whatever the iteration t.
The results of these experiments are reported on Fig. 3. We

used as distance measure between ut and u∗ the expression
(S(u∗)−S(ut))/(S(u∗)) rather than (S(u∗)−S(ut)) to make
this measure of suboptimality somehow independant of the
size n of the optimization problem. An analysis of Fig. 3
shows that for every value of n, the suboptimality of the
solution seems to decrease to 0 when t increases. It also shows
that to reach a given degree of suboptimality, one needs to
carry out more iterations when n increases. Finally, one can
see that the CPU time per iteration grows more that linearly
with the size of the optimization problem n. Actually, one
can show that the CPU time per iteration grows quadratically
with n. This quadratic growth of the CPU times with n is a
consequence of the fact that #Ut increases linearly with n
and that the time needed to generate each element of Ut and
evaluate its performance S(·) also grows linearly with n.
We ran the CE-based optimization algorithm one thousand

times for different values of n (25, 50, 100, 200 and 400) and
observed that it converged every time to degenerate pfms with
a reasonable number of iterations. Figure 4 reports for different
values of n (i) the average number of iterations to convergence,
(ii) the average suboptimality of the solution outputted by the
algorithm2 and (iii) the probability that the algorithm identifies
an optimum. The main two observations to be drawn from this
table are the following. First, we observe that the number of

2This average suboptimality is here equivalent to the asymptotic subopti-
mality since we only stop the algorithm when it has converged.

1293

t pt[1] pt[2] pt[3] pt[4] pt[5] pt[6] pt[7] pt[8] pt[9] pt[10] pt[11] pt[12] pt[13] pt[14] pt[15] pt[16] pt[17] pt[18] pt[19] pt[20] max
u∈Ut

S(u)

1 0.5 -100316.0
2 0.75 0.75 0.8 0.7 0.9 0.8 0.8 0.6 0.8 0.65 0.65 0.6 0.95 0.5 0.35 0.55 0.5 0.6 0.5 0.45 -95526.3
3 0.9 1 1 1 0.9 0.95 1 0.8 0.9 0.9 0.75 0.8 1 0.3 0.45 0.75 0.4 0.65 0.25 0.5 -92578.9
4 1 1 1 1 1 1 1 0.92 0.96 0.96 0.89 1 1 0.42 0.64 0.67 0.32 0.60 0.07 0.46 -92210.5
5 1 1 1 1 1 1 1 1 1 1 1 1 1 0.54 0.90 0.80 0.06 0.58 0.06 0.03 -92210.5
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 -92210.5

Fig. 2. A typical run of the cross-entropy based algorithm for combinatorial optimization.

0

5 10 15 20 25 30

0.05

0.1

0.15

0.2

0.25

0.3

t

distance
to optimum

1

n = 50

n = 100

n = 200

n = 400

50

0.05

0.1

0.15

0.2

0.25

100 150 200 250 300 350 400

CPU time (s)

n

Fig. 3. Some insights into the computational complexity of the CE-based
optimization algorithm for solving the unit commitment problems. The figure
on the top-row plots for different values of n the expected distance between
the element ut = arg maxu∈U1∪U2∪...∪Ut S(u) and the optimum u∗ as
a function of the number of iterations. The distance between u∗ and ut

is defined as (S(u∗) − S(ut))/(S(u∗)). The figure on the bottom-row
represents the average CPU times (in seconds on an AMD 2800+/1.6 GHz
processor) per iteration of the CE-based optimization algorithm as a function
of the size n of the unit commitment problem. The results have been averaged
over 1000 runs of the algorithm.

iterations to convergence increases slightly less than linearly
with n. Moreover, the number of elements of U for which the
performance S(·) must be evaluated is equal to C × n per
iteration, where C is a constant. As a result, the number of
evaluations of the performance function S(·) required before
convergence grows less than quadratically with n. Knowing
that #U grows exponentially with n, we have therefore an
exponential decrease with n of the percentage of elements
u ∈ U whose performances are assessed throughout the course
of the algorithm. This percentage is equal on average to
5.97×10−3 if n = 25 and drops to 5.26×10−10, 1.39×10−24,
3.30× 10−54 and 6.26× 10−114 when n is equal to 50, 100,
200 and 400, respectively.

Second, and perhaps surprisingly, the accuracy of the algo-
rithm in asymptotic conditions is the best for the largest values
of n. In particular, we found out that over 1000 runs, the
algorithm was only once unable to identify the optimum when
n was equal to 200 or 400.

average number of average probability
n iter. for Bern(·, pt) suboptimality of identifying the

to degenerate the algorithm optimum u∗

25 8.02 7.833 × 10−5 0.98
50 11.86 2.222 × 10−5 0.974
100 17.63 1.678 × 10−6 0.99
200 26.57 3.792 × 10−8 0.999
400 40.45 9.455 × 10−9 0.999

Fig. 4. Influence of the size n of the combinatorial optimization problem on
(i) the average number of iterations after which Bern(·, pt) degenerates,
(ii) the average suboptimality of the algorithm measured as (S(u∗) −
maxu∈U1∪U2∪...∪Utend

S(u))/(S(u∗)) (iii) the probability the algorithm
identifies u∗ over one run, that is the probability that u∗ ∈ U1 ∪ U2 ∪
. . . ∪ Utend

where tend refers to the first iteration to which corresponds a
degenerate pmf. These results have been generated by running for every value
of n the CE-based combinatorial algorithm one thousand times.

IV. CONCLUSIONS

In this paper, we reported some results obtained by running
a combinatorial algorithm based on the CE method on an
academic class of unit commitment problems. We found out
that the algorithm, with its suggested default parameters, has
good performances for this class of problems.
The experiments suggest that CE-based tools can certainly

be useful for solving power system combinatorial problems,
even if it is not clear whether these methods would perform
better that other stochastic optimization algorithms (e.g., ge-
netic algorithms, nested partitioning, ant colony optimization).
In this respect, it would certainly be interesting for the power
system community to define a library of benchmarks for power
system combinatorial problems that researchers could use to
assess the performances of their approaches, something we
found out was missing.
We underline that the CE-based concepts could be exploited

to solve other power system related problems than combina-
torial optimization ones. For example, by assuming we have
a probabilistic description of the operating conditions of a
power system and of the possible contingencies, we could
exploit these concepts in the rare-event framework to estimate
the (small) probability that the integrity of the system may
be lost and also to identify the pairs “operating condition-
contingency” that lead to this loss of integrity. The CE method

1294

could also be applied to the resolution of continuous and
mixed-variable power system optimization problems.

APPENDIX

We describe in this appendix the unit commitment problem
used in our simulations.
This unit commitment problem has n generators indexed

by 1, 2, . . ., n. Generator i can be turned on or off. If turned
on, it produces a power equal to P [i] MW at a cost C[i] $
per Megawatt hour (MWh). We associate to every generator
i a so-called utility variable u[i], which is equal to 1 if the
generator is on and 0 if it is off. We want to determine the
value of the vector u ∈ {0, 1}n that minimizes

costProduction(u) = (11)
nX

i=1

C[i]P [i]u[i] +

(
0 if

Pn

i=1 P [i]u[i] ≥ Pl

(Pl −
Pn

i=1 P [i]u[i]) × penalty otherwise .

Expression (11) represents the sum of the production costs
over one hour to which a penalty term is added if the scheduled
generators cannot cover the load Pl.
The symbols n, P [i], C[i], Pl, penalty are parameters of

the optimization problem. They have been chosen as follows
in our simulations:

1) the number of generators is equal to a multiple of 10.
2) the powers P [i] are equal to 100 MW whatever i.
3) C[i] = 30 + (i−1)

n−1 × 70, that is the cost of production
per MWh grows linearly with the index number of a
generator. It is equal to 30$/MWh for generator 1 and
100$/MWh for generator n.

4) the value of Pl is equal to 8×n
10 × 100, which means

that, since n is a multiple of 10, eighty percents of the
generators need to be turned on to cover the load.

5) the penalty factor is equal to 110$/MWh. The penalty
to be paid for not covering a certain amount of the load
Pl is therefore larger than the cost of producing this
amount of load with the generators whose production
costs are the highest.

With such a choice of parameters, the optimal solution consists
of dispatching the machines 1, 2, . . . , 8×n

10 and the minimum

cost is equal to:
∑ 8×n

10
i=1 [(30 + (i−1)

n−1 × 70) × 100]. While
the unit commitment problem has been formulated here as
a minimization problem, we treat it in our simulation result
section as a maximization problem by taking a performance
function S(u) equal to −costFunction(u) everywhere on U .

REFERENCES

[1] E.H.L. Aarts and J.H.M. Korst. Simulated Annealing and Boltzmann
Machines. John Wiley & Sons, 1989.

[2] S. Ceria, C. Cordier, H. Marchand, and L.A. Wolsey. Cutting planes
for integer programs with general integer variables. Mathematical
programming, 81(2):201–214, April 1998.

[3] C.S. Chang, L. Tian, and F.S. Wen. A new approach to fault section
estimation in power systems using Ant system. Electric Power Systems
Research, 49(1):63–70, 1999.

[4] P.T. de Boer. Analysis and Efficient Simulation of Queueing Models of
Telecommunication Systems. PhD thesis, University of Twente, 2000.

[5] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man,
and Cybernetics - Part B, 26(1):26–41, 1996.

[6] Y. Fu, M. Shadidehpour, and Z. Li. Security-constrained unit com-
mitment with AC constraints. IEEE Transactions on Power Systems,
20(3):1538–1550, August 2005.

[7] R.S. Garfinkel and G.L. Nemhauser. Integer Programming. John Wiley
& Sons, New-York, 1972.

[8] F. Glover. Tabu search - part ii. ORSA Journal on Computing, 2:4–32,
1990.

[9] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, 1989.

[10] B.E. Helvik and O. Wittner. Using the cross-entropy method to
guide/govern mobile agent’s path finding in networks. In 3rd Interna-
tional Workshop on Mobile Agents for Telecommunication Applications
− MATA’01, pages 255–268, 2001.

[11] S.A. Kazarlis, A.G. Bakirtzis, and V. Petridis. A genetic algorithm
solution to the unit commitment problem. IEEE Transactions on Power
Systems, 11(1):83–92, February 1996.

[12] F.J. Marin, F. Garcia-Lagos, G. Joya, and F. Sandoval. Genetic algo-
rithms for optimal placement of phasor measurement units in electrical
networks. Electronics Letters, 39(19):1403–1405, September 2003.

[13] C. Moors, D. Lefebvre, and T. Van Cutsem. Combinatorial optimization
approaches to the design of load shedding schemes against voltage in-
stability. In Proceedings of the 32nd North American Power Symposium
(NAPS), pages 1014–1021, 2000.

[14] K. Nara, A. Shiose, M. Kitagawa, and T. Ishihara. Implementation of ge-
netic algorithm for distribution systems loss minimum re-configuration.
IEEE Transactions on Power Systems, 7(3):1044–1051, 1992.

[15] C.W. Richter and G.B. Sheble. A profit based unit commitment GA for
the competitive environement. IEEE Transactions on Power Systems,
15(2):715–721, May 2000.

[16] R. Romero, R.A. Gallego, and A. Monticelli. Transmission system
expansion planning by simulated annealing. IEEE Transactions on
Power Systems, 11(1):364–369, February 1996.

[17] Rubinstein. Optimization of computer simulation models with rare
events. European Journal of Operations Research, 99:89–112, 1997.

[18] R.Y. Rubinstein and D.P. Kroese. The Cross-Entropy Method. A Unified
Approach to Combinatorial Optimization, Monte-Carlo Simulation, and
Machine Learning. Information Science and Statistics. Springer, 2004.

[19] L. Shi and S. Olafsson. Nested partitioning for global optimization.
Operations Research, 48(3):390–407, 2000.

[20] J.A. Tomlin. An improved branch-and-bound method for integer
programming. Operations Research, 19(4):1070–1075, 1971.

[21] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi.
A particle swarm optimization for reactive power and voltage control
considering voltage security assessment. IEEE Transactions on Power
Systems, 15(4):1232–1239, November 2000.

1295

