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Abstract— We propose in this paper a novel approach for
identifying rare events that may endanger power system integrity.
This approach is inspired by the rare-event simulation literature
and, in particular, by the cross-entropy (CE) method for rare-
event simulation. We propose a general framework for exploiting
the CE method in the context of power system reliability
evaluation, when a severity function defined on the set of possible
events is available. The approach is illustrated on the IEEE 30
bus test system when instability mechanisms related to static
voltage security are considered.

Index Terms— Power system security, identification of danger-
ous events, cross-entropy method.

I. INTRODUCTION

Blackouts in power systems are rare, but they have such
tremendous societal consequences that decreasing their prob-
ability of occurrence is of paramount importance. Common
practice consists of designing and operating power systems
in such a way that they are able to cope with a set of
events such as the sudden loss of transmission elements, short-
circuits, variations in the demand and generation patterns,
etc. Typically, the (combinations of) events explicitly covered
in security and reliability studies are those that are a priori
supposed to have a rather high probability of occurrence,
the rationale behind this choice being twofold. First, by
focusing on a subset of events one can sufficiently reduce the
complexity of the reliability/security evaluation procedure to
make it practically feasible for large power systems. Second, it
is assumed that ensuring the security of the system with respect
to the chosen events also reduces its vulnerability with respect
to the multitude of events not explicitly taken into account, and
hence increases the system reliability. The increasing rates of
large blackouts observed over the recent years may however
question whether such an approach for assessing the security
of a power system is still appropriate.

Within this context, the goal of our research is to propose
a framework to identify in a “computationally feasible way”
the events that should be considered by the TSOs in their
reliability/security studies and, as a byproduct, to propose
techniques for computing reliability indices based on a sample
of reasonable size of such events. Before developing further
the rationale behind this framework, let us remind here the
causes of two major system-wide disturbances that have hap-
pened recently. One is the August 14th, 2003 blackout that has
plunged the North-East part of the USA in the dark for several
hours and the other is the November 4th, 2006 event which has
affected West Germany as well as some areas in France and
Belgium and other parts of the European interconnection. As
for the former blackout, the sequence of events having lead to
the collapse of the system is the following. First, some highly

loaded transmission lines tripped due to some poor vegetation
management. Second, this information has not been correctly
displayed on the screen of an operator, who hence did not
take appropriate actions. And then, the inadequate response of
other dispatchers to this dangerous situation lead to a cascade
of trippings eventually causing a major blackout [11]. The root
cause behind the European quasi-blackout was from another
puzzling nature. In order to allow a boat to cross a river, a
transmission line had to be switched off. A system operator
gave the green light for carrying this manoeuvre though the
load on the power network at the time of the manoeuvre was
significantly increased with respect to the load at the time
at which the stability study took place. When the line was
disconnected, several other nearby lines tripped on overload
and initiated a cascade splitting the European interconnection
into three islands, whose energy balance was restored on the
edge thanks to fast load and generation shedding [1]. These
two scenarios have really an “unfortunate nature” since their
probability of inception, as it would have been estimated
beforehand, is indeed extremely low. This presumably explains
why the involved TSOs did not anticipate them in their security
studies.

Because of the complexity of power systems, it is extremely
difficult - and as a matter of fact impossible - to screen over all
the plausible events to identify the dangerous ones. Thus, our
main motivation in this paper is to propose an approach which
could help identify highly severe (combinations of) events (i.e.
those that would lead to blackouts or quasi-blackouts) without
running a security analysis for every event. Our approach does
not, as it is currently the case, focus on high-probability events
as candidate interesting ones for security studies. Rather it
aims to identify within an a priori defined extremely large
set of events, those which have the potential to endanger the
integrity of the system. The proposed approach is based on
a reformulation of the issue of assessing the reliability of a
power system as a rare-event simulation problem, which is
then solved by using cross-entropy based techniques [15].

The rest of this paper is organised as follows. In the next
section the cross-entropy (CE) method for rare-event simu-
lation is introduced (Section II). Then, Section III discusses
the application of this method for sampling dangerous events
and estimating reliability indices. An illustrative experimental
application of these concepts to a problem of static voltage
security is reported in Section IV. Section V discusses the
proposed approach with respect to existing work in reliability
evaluation of power systems and conclusions are drawn in
Section VI.



II. CE METHOD FOR RARE-EVENT SIMULATIONS

We start this section by presenting the main concepts related
to the CE method for rare-event simulation. Afterwards, we
explain how to build from these concepts some computation-
ally efficient algorithms. Finally, we present a fully specified
algorithm based on the CE method when the set of events is a
subset of Rn. The material of this section is largely borrowed
from [15] to which we refer the reader for a complement of
information.

A. Importance sampling for rare-event simulations

Let X be a random variable taking its value in some space
X with a probability density function (pdf) f(·), let S(·) be
a real-valued function defined on X and γ be a real number.
In the rare-event simulation context, one needs to estimate the
probability of occurrence l of an event {S(X) ≥ γ}, i.e. to
estimate the expression EX∼f(·)

[
I{S(X)≥γ}

]
.1

In rare-event simulation problems, this probability is ex-
tremely low, say smaller than 10−6, and estimating l with
enough accuracy by relying on a Crude Monte-Carlo (CMC)
estimator

l̂ =
1
N

N∑
j=1

I{S(Xj)≥γ} (1)

requires to draw a considerably large sample X1, X2, . . ., XN

from f(·). For example, estimating l, with a sample of size N

leads to a standard error σl̂ =
√

l(1−l)
N . Hence, a sample size

of N ' 1010 is required in order to estimate l ' 10−6 with
relative error of 1% (i.e. with a standard error of 0.01l).

An alternative to CMC is based on importance sampling.
With such an approach, a random sample X1, X2, . . . , XN

is drawn from an importance sampling pdf g(·) and the
probability of occurrence of the event is estimated via the
following estimator2

l̂ =
1
N

N∑
j=1

I{S(Xj)≥γ}
f(Xj)
g(Xj)

. (2)

In this context, the most effective way to estimate l would be
to adopt the “ideal” importance sampling pdf

g∗(X) =
I{S(X)≥γ}f(X)

l
. (3)

Indeed, since l is constant, using this “ideal” importance
sampling pdf g∗(·) (3) would lead to an estimator (2) having a
zero variance. Consequently, we would need to produce only
a one element sample to determine l.

The obvious difficulty is that g∗(·) depends on the unknown
parameter l.

The main idea of the CE method for rare event simulation
is to find inside an a priori given set G of pdfs defined on X ,
an element g(·) such that its distance to the “ideal” sampling

1The function I{logical expression} is defined by
I{logical expression} = 1 if logical expression = true and 0

otherwise. If X is finite, the expression EX∼f(·)
ˆ
I{S(X)≥γ}

˜
can be

written equivalently as
P
X∈X I{S(X)≥γ}f(X).

2assuming that g(X) 6= 0 whenever I{S(X)≥γ}f(X) 6= 0

distribution is minimal. A convenient measure of “distance”
between two pdfs a(·) and b(·) on X is the Kullback-Leibler
divergence, which is also termed the cross-entropy between
a(·) and b(·). The Kullback-Leibler divergence, which is not
a distance in the formal sense since it is for example not
symmetric, is defined as follows:

D(a, b) = EX∼a(·)

[
ln
a(X)
b(X)

]
(4)

The CE method reduces the problem of finding an appropriate
importance sampling pdf to the following optimization prob-
lem:

arg min
g∈G

D(g∗, g) . (5)

One can show through simple mathematical derivations that
solving (5) is equivalent to solve:

arg max
g∈G

EX∼f(·)
[
I{S(X)≥γ} ln g(X)

]
(6)

which does not depend explicitly on l anymore.
If l is not too small, CE-based algorithms for rare-event

simulations estimate a good solution of (6) by solving its
stochastic counterpart:

arg max
g∈G

M∑
j=1

I{S(Xj)≥γ} ln g(Xj) (7)

where the sample X1, X2, . . ., XM is drawn according to f(·).
When l is too small, say l < 10−6, which is often the case
in rare-event simulation, the value of M one has to adopt for
having a “good” stochastic counterpart may be prohibitively
high and some specific iterative techniques need to be adopted
to solve (6). The use of these techniques is often equivalent to
solving a sequence of rare event problems using the same pdf
f(·) and function S but with increasing values of γ converging
to the value of γ related to the original problem.

Under some specific assumptions on X , f(·) and G, it is
possible to solve analytically the optimization problem (7).
This property is often exploited in the CE context.

For example, let us suppose that X is Rn and let us denote
by GaussRn(·, v), where v = [µ, σ] ∈ Rn × Rn, the n-
dimensional (diagonal) Gaussian pdf

GaussRn(x, v) = Πn
i=1

1
σ[i]
√

2π
exp

(
−x[i]− µ[i]

2σ[i]2

)
, (8)

where x[i] is the ith component of the random variable X
and σ[i] (µ[i]) is the standard deviation (mean) of the n-
dimensional pdf alongside the ith direction.

Then, one can show that if f(·) is a n-dimensional Gaussian
pdf and G is the set of all n-dimensional Gaussian pdfs, the
solution GaussRn(·, v∗) of (7) can be computed analytically:

µ[i] =

∑M
j=1 I{S(Xj)≥γ}Xj [i]∑M

j=1 I{S(Xj)≥γ}
, (9)

σ[i] =

√√√√∑M
j=1 I{S(Xj)≥γ}(Xj [i]− µ[i])2∑M

j=1 I{S(Xj)≥γ}
. (10)



Problem definition: A function S : X → R with X ⊂ Rn, a random variable X ∈ X taking its value in X
with pdf f(·) and the value of γ.
Algorithm parameters: v1 = [µ1, σ1]T , C, %, N
Output: An estimation of the (small) probability EX∼f(·)

[
I{S(X)≥γ}

]
and a pdf GaussX (·, v) giving preference

to the events x such that {S(x) ≥ γ}.
Algorithm:

Step 1. Set t equal to 1. Set nbElite equal to the largest integer inferior or equal to %× C × n.
If nbElite < 1 then set nbElite to 1.
Step 2. Set Xt equal to an empty set and rt to an empty vector.
Step 3. Draw independently C × n elements according to the pdf gt(·) = GaussX (·, vt) and store them in Xt.
Step 4. For every element x ∈ Xt, compute S(x) and add this value at the end of the vector rt.
Step 5. Order the vector rt in decreasing order and set γ̂t = min(γ, rt[nbElite]).

Step 6. Set µt+1[i] =
P
x∈Xt

I{S(x)≥γ̂t}x[i]f(x)/gt(x)P
x∈Xt

I{S(x)≥γ̂t}f(x)/gt(x)
and σt+1 =

√P
x∈Xt

I{S(x)≥γ̂t}(x[i]−µt+1[i])2f(x)/gt(x)P
x∈Xt

I{S(x)≥γ̂t}f(x)/gt(x)

for i = 1, 2, . . . , n and vt+1 = [µt+1, σt+1]

Step 7. If γ̂t = γ then estimates l using the estimator 1
N

∑N
j=1 I{S(Xj)≥γ}

f(Xj)

GaussX (Xj ,vt+1)
where the samples Xj are

drawn from GaussX (·, vt+1) and return both l̂ and the pdf GaussX (·, vt+1). Otherwise, t← t+ 1 and go to Step 2.

Fig. 1. A fully specified cross-entropy based rare-event algorithm when the event space is a subset of Rn.

B. Iterative CE based rare-event simulation algorithm

As mentioned in the previous subsection, when l is too
small, one needs to draw a prohibitively high number of
samples to obtain a “good” stochastic counterpart (7) of (6).
This originates from the fact that to have a “good” stochastic
counterpart, a sufficient number of samples Xj for which
{S(Xj) ≥ γ} needs to be drawn. Iterative algorithms for
solving accurately this stochastic counterpart are therefore
used.

The rationale behind these algorithms is the following.
First, let us observe that even if the pdf used to draw the
sample used for building the stochastic counterpart was not
drawn according to f(·) but well another pdf, called h(·),
the stochastic counterpart could still have the same “meaning”
provided that every term of the sum is weighted by a factor
f(Xj)

h(Xj)
. Therefore, if one can identify a pdf h(Xj) for which

the probability of occurrence of the event {S(X) ≥ γ} is not
too small, it is very likely that the number of samples that will
have to be drawn to obtain a good stochastic counterpart will
have to be relatively small.

To identify such a pdf, it is of common practice to solve a
sequence of rare-event problems differing only by the values of
γ used. The first iteration of this sequence consists of a “rare-
event” problem based on a small enough value of γ 3 so as to
require only drawing a reasonable number of samples with f
for having a “good” stochastic counterpart4. The pdf computed
by solving this stochastic counterpart is in general more likely
than f to generate events associated with high values of S(·). It
is then used to generate the sample for solving the stochastic
counterpart of the second rare-event problem, which differs

3The smaller the value of γ is, the higher the probability of the event
{S(Xj) ≥ γ} is.

4Actually, it is not required to use f to draw the sample at the first iteration,
provided that the stochastic counterpart is corrected appropriately.

only from the first one by a larger value of γ. This larger
value of γ is itself defined from this same pdf to guarantee
that by proceeding like this, not too many samples have to
be drawn to solve accurately the stochastic counterpart at the
second iteration. The algorithm proceeds similarly over the
next iterations and stops when the rare-event problem solved
is identical to the original one.

C. A fully specified algorithm

Figure 1 gives the tabular version of a fully specified CE-
based algorithm for rare-event simulation problems for which
the set of events X is a bounded subset of Rn. The rationale
behind the algorithm is based on the iterative scheme described
in previous subsection and is particularized to the case where
G, the set of pdfs in which one looks for an element which
“stands” the closest to the “ideal” sampling distribution, is the
set of Gaussian distributions “truncated” to values falling in X .
Similarly to the notation adopted for denoting non-truncated
Gaussian distributions, the symbol GaussX (·, v) is chosen to
refer to truncated ones. The value of these truncated pdfs at
x ∈ X is GaussRn (x,v)

EX∼GaussRn (·,v)[I{X∈X}]
.

At every iteration t, the algorithm proceeds as follows.
First, it uses the pdf GaussX (·, vt) computed at the previous
iteration and draws from this distribution a sample named Xt.
From this sample, it computes a value γt which is such that
only a small fraction % (% is a parameter of the algorithm)
of the elements of x ∈ Xt lead to a value S(x) larger or
equal to γt. If the value of γt so computed turns out to
be larger than γ, then it is replaced by γ. This value γt is
then used together with GaussX (·, vt) to define the rare-event
problem to be solved at iteration t. By defining the rare-event
problem in this way, it is likely that the probability of the event
{S(X) ≥ γt} with X ∼ GaussX (·, vt) is not too small. The



stochastic counterpart of the optimization problem (see (7)
and (6)) can therefore be defined by using a sample which is
not too large. The algorithm described in Figure 1 uses the
already drawn sample Xt to build this stochastic counterpart
(where every term is weighted by f(x)

GaussX (x,vt)
). An analytical

solution, which is an approximation of the solution of the
stochastic counterpart, is then used to compute the parameter
vt+1 = [µt+1, σt+1] of the pdf used at the next iteration.

The algorithm stops when γt is equal to γ. Before stopping,
the algorithm computes an estimate of l by exploiting the im-
portance sampling estimator (2) with the importance sampling
distribution GaussX (·, vt+1). It returns both this estimate of
l and GaussX (·, vt+1), which is usually a pdf which gives a
high preference to the events x such that {S(x) ≥ γ} is true.

D. Algorithm parameters

Before closing on the description of this CE algorithm, it
is worth elaborating on the role of its parameters.

The parameter C determines the size of the samples Xt in
a way that |Xt| = C × n. The rationale behind adopting a
sample Xt whose cardinality is proportional to the dimension
n of the event space X is that usually, the larger the dimension
of event space space is, the larger the sample Xt has to be for
the algorithm to behave well. A default value for this parameter
C equal to 10 is adopted in this paper.

As explained before, the parameter % determines the per-
centage of elements x of Xt which lead to true events {S(x) ≥
γt}. A default value of 0.1 is chosen for %.

Finally, the choice of the (diagonal) Gaussian family of
importance sampling distributions is essentially guided by
practical considerations, namely the fact that it is easy to draw
samples from such distributions and the fact that it leads to
closed-form solutions of the minimization problem (7).

III. CE METHOD FOR POWER SYSTEM ANALYSIS

The cross-entropy based algorithm for rare-event simulation
described in the previous section determines, from a probabil-
ity distribution f(·) defined over the set of events X , a value γ
and a real-valued function S(x) defined over X , the following
information: a pdf biased towards events x ∈ X such that
S(x) > γ, and an estimate of the probability that S(x) > γ.

In this paper, we suggest using this algorithm for two differ-
ent types of problems met by power system engineers, namely
the identification of dangerous events and the computation of
reliability indices.

A. Identification of dangerous events

When studying the stability of a power system, identification
of the dangerous events is often seen as the identification of the
plausible (non-zero probability of inception) pairs “operating
conditions-perturbation” that may endanger the stability of the
system. For this task, specific stability evaluation tools able
to assess whether a particular contingency will indeed lead
or not to unacceptable operating conditions are used. Since
the plausible pairs “operating conditions-perturbation” may
be extremely numerous, screening each pair by the stability

evaluation tool is generally not possible. Now, let us suppose
that S(x) is a function equal to 1 if x drives the system to
unacceptable conditions and to 0 otherwise, and let us suppose
that we use the CE method with a value of γ = 1, while
f(·) is any pdf defined on the event space. By running the
cross-entropy based algorithm on this problem with a family
of importance sampling distributions G, one can find in a
computationally efficient way a pdf in G which concentrates
on the dangerous events. By drawing samples from this latter
pdf, one could therefore identify dangerous events with a high
probability and therefore alleviate the computational burdens
associated with running a security analysis on all the events
or by sampling them from f(·).

B. Computation of reliability indices

The computation of a reliability index can be formulated in
the following way. The power system can operate in different
conditions (e.g., different values for the load, availability or not
of some generation units) and perturbations can happen to the
system (e.g., short-circuits). The probability that the system
will operate in a specific condition as well as the probability
of an event (that can be correlated to the operating conditions)
are also given (the known or assumed to be known a priori).
A tool to assess whether a given pair “operating conditions-
perturbation” leads to unacceptable conditions or not is also
available. From there, it is asked to compute the probability
that the system may be driven to unacceptable conditions.

If the set of pairs “operating conditions-perturbation” were
relatively small, this problem could be solved in a straight-
forward way by enumeration. However, it is generally not
the case and efficient numerical tools have to be designed.
By for example defining S(x) as being a function equal to
1 if x drives the system to unacceptable conditions and to 0
otherwise, and using a value of γ = 1, it is straightforward
to see that the problem of computation of the reliability index
is equivalent to solving the rare-event problem {S(x) > γ} ,
which in turn can be solved efficiently by the cross-entropy
based algorithms described previously.

C. Discussion

While this cross-entropy based framework for identifying
dangerous events or computing reliability indices is certainly
conceptually attractive, its successful application depends
however on several factors that may be critical.

First, good models of the power system and appropriate
security analysis tools have to be available. In the case of es-
timation of reliability indices, these models must also contain
accurate probability distributions over the events, which may
be particularly difficult to obtain.

Second, while the function S(x) could take in principle
binary values, these cross-entropy based algorithms usually
behave better if, given any two non-dangerous events x and x′,
the difference between S(x) and S(x′) gives some information
about which element is the closest to the stability boundary, in
a way that if x is the closest to this boundary, the difference
is positive and negative otherwise. Let β the maximal value
that S(x) can take on the set of non-dangerous events and



let α be greater than β. Then, by setting S(x) equal to α
when x is a dangerous event and γ to α, this information of
distance with respect to the stability boundary greatly helps to
cross-entropy algorithm to “drive” through the iterations the
importance sampling pdfs to the dangerous events. Practically,
rather than computing in the event space the stability boundary
of the system and defining a topology in X for being able to
compute distances, S(x) is chosen as being an image of the
severity of the event x. The more x is severe, the higher S(x)
is. This is the reason why we have chosen to name in this
power system context the function S(x), the severity function.

As last important technical point that we mention, there is
the choice of f(·) that needs to be made when using the cross-
entropy based approach for identifying dangerous events.
Simulations have shown that this choice may greatly influence
the convergence properties of the algorithm. However, we
found out that a good choice for f(·) was to choose a pdf that
was giving a good coverage over the event space. Another
appropriate strategy, which is often used when cross-entropy
methods are applied to combinatorial optimization, is to set
all the terms f(·)

GaussX (·,vt) equal to 1 at Step 6 of the algorithm.

IV. EXPERIMENT FOR STATIC VOLTAGE SECURITY

We have chosen to experiment the framework described in
the previous section on the IEEE 30 bus system depicted at
Figure 2, which has been vastly used as benchmark test system
in the literature (see, e.g., [16]).

Fig. 2. On-line diagram of the IEEE 30 bus system.

The problem tackled here is the identification of dangerous
events for static voltage security and more specifically for
static loadability5. In this system, an event is defined as being
an homothetic increase/decrease of the load with respect to

5In the previous section, the events we were referring to when discussing the
application of cross-entropy based methods to the identification of dangerous
events were described by a pair “operating conditions-perturbation” while
here they can be described by operating conditions only. This can be seen as
a particular case for which the set of possible perturbations does not contain
any element.

the base case and we consider that such an event is acceptable
if the corresponding demand level can be served by the avail-
able active and reactive generation capacity while respecting
voltage constraints6. Computationally, we can thus determine
whether an event is feasible by solving an active/reactive
optimal power flow (OPF) problem (see below). The problem
of identifying the dangerous events thus reduces to finding
the set of homothetic variations of the load for which his
OPF problem is not feasible anymore. By assuming that
the coefficient x multiplying the load in the base case can
vary in the interval [0.25; 4], the problem of identifying the
dangerous events consists therefore of finding the values of x
in X = [0.25; 4] which lead to unfeasible OPF problems. By
assuming that the lower x, the easier the system can operate
within these constraints and by using a dichotomy approach to
compute the maximum load the system can sustain, we found
out that the set of dangerous events was [2.1067; 4].

To apply our proposed approach for identifying dangerous
events, a severity function needs to be adopted. The severity
function chosen here is related to the algorithmic behaviour
of an OPF solver which optimises the generation dispatch and
the generator voltages to minimize generation cost. The OPF
is based on an interior point algorithm (see, e.g. [6]) and starts
iterating in the search space from a point corresponding to an
optimised power system for the base case. The value of the
severity function for a particular event x is chosen equal to
the number of iterations to convergence, if convergence indeed
occurs. The rationale behind choosing such a function S(x)
is related to the fact that one may reasonably assume that
the higher the number of iterations is, the more the system is
stressed and the closer it operates from its stability limits.

If convergence does not occur, it is assumed that no solution
to the problem exists (that is that x is a dangerous event) and
S(x) is set equal to a large value, chosen equal to 1000. Note
that a convergence case can never reach such a high value
since the OPF automatically declares divergence after 500
iterations. Henceforth, an appropriate value of γ is any value in
]500; 1000]. By running the algorithm described in Figure 1 (as
previously indicated, we use C = 10 and ρ = 0.1 while n = 1)
when choosing the initial pdf f(·) = Gauss[0.25;4](·, [1, 0.5]),
we obtain the sequence of pdfs drawn on Figure 3. At the fifth
iteration of the algorithm, the stopping criterion is reached
(γ5 = γ). As one can see, the pdf indeed evolves to give
strong preference to the dangerous events.

When running the algorithm, the correction terms
f(X)

GaussX (X,vt)
intervening in Step 6 have been set equal

to 1 since we were only interested in identifying pdfs giv-
ing preference to dangerous events, rather than computing
reliability indices. We may however wonder whether the
different distributions GaussX (·, v1), . . ., GaussX (·, v5) are
good importance sampling distributions when they are used to
estimate the probability of the rare-event problem defined by
the same S(x) and γ as before but with a pdf f ′(·) being a
limited Gaussian distribution with much lower variance than
f and equal mean (see Figure 4). This leads to a rare-event

6The set of events has been chosen relatively simple to allow an identifi-
cation of the dangerous events using some common engineering practice.
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Fig. 3. A typical run of the algorithm.
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Fig. 4. Probability density function of the rare-event problem.

probability estimation problem since under f ′ the probability
that x is higher than 2.1067 is extremely low (6.7468.10−27).

To answer this question, we have computed (using 1000
replications of the experiment) for these different importance
sampling pdfs the standard deviation of the estimator given by
Eqn (2) with N chosen equal to 20. As shown in Table I, the
algorithm produces a sequence of pdfs which, when used for
importance sampling, leads to a sequence of estimators with
increasing accuracy.

V. RELATED WORK

The CE based framework for power system analysis pro-
posed in this paper can be used specifically for two differ-
ent tasks: the identification of probability distributions for
sampling dangerous events and the computation of reliability
indices. Many research papers focus on the problem of evalua-
tion of reliability indices for specific power system problems.
As way of example, in the bibliography on the application
of probability methods in power system reliability evaluation
over the period 1996-1999 (see [4]) over 150 references are
given. It has long been recognised by power system engineers
that crude Monte-Carlo (MC) simulations for evaluating the
probability of blackouts was computationally inefficient and
numerous techniques were proposed to address this problem.
For example, Reference [2] proposes to combine, in the con-
text of distribution systems, MC simulations with some analyt-

TABLE I
STANDARD ERROR OF THE ESTIMATOR (2) FOR DIFFERENT IMPORTANCE

SAMPLING DISTRIBUTIONS.

Importance sampling distribution σl̂
GaussX (·, v1) 4.897.10−27

GaussX (·, v2) 3.674.10−27

GaussX (·, v3) 3.549.10−27

GaussX (·, v4) 2.996.10−27

GaussX (·, v5) 1.803.10−27

ical approaches. Paper [12] proposes to exploit artificial neural
networks based on the learning vector quantization algorithm
to make MC techniques more computationally efficient for
loss of load probability calculations. Importance sampling as
well as other variance reduction techniques have also been
recurrently proposed in the power system literature as an
enhancement of MC methods (see, e.g., [13], [3], [14]). The
approach proposed in this paper can be seen as an importance
sampling technique where the sampling distribution is built
by using algorithms proposed in the rare-event simulation
literature, and, more precisely, those based on the cross-
entropy method. Researchers in power systems have already
used tools from the rare-event simulation literature to compute
reliability indices (see [8]), but, to the best of our knowledge,
never those exploiting the cross-entropy method. This method
has however already been exploited in the context of power
system combinatorial optimization (see [9]).

For identifying probability distributions targeting dangerous
events, the CE based approach proposed in this paper will only
have to run in principle a security analysis for a relatively
small set of events. Viewed in this light, it can be seen as an
approach for rapidly identifying dangerous events in a power
system and can therefore be apparented to the significant body
of work related to contingency filtering/screening in power
systems (see, e.g., [10], [5], [7]). Most of the approaches for
contingency filtering however rely on deterministic algorithms
while the one proposed in this paper is a stochastic one.
The importance sampling distribution determined by the rare-
event simulation algorithm can also be seen as a classifier
for dangerous/non-dangerous events: if it associates a low
probability to an event, then it is a non-dangerous one and,
otherwise, a dangerous one. In this respect, the approach
proposed has some similarities with the many works where
classifiers for assessing the degree of severity of power system
scenarios are built (see, e.g., [7], [18], [17]).

VI. CONCLUSION

This paper has proposed a framework for identifying dan-
gerous events and as a byproduct for efficiently computing re-
liability indices in a power system. The proposed framework is
relying on the cross-entropy method for rare-event simulation
and its application to power system problems requires to be
able to associate to each event a severity value. The approach
was illustrated on a problem of static voltage security and,
even if preliminary, the results were encouraging.

The proposed approach essentially aims at deriving from
an initial sampling distribution a sampling distribution which



focuses on events of high severity in a way which is only
mildly depending on the initial distribution. Therefore, this
approach may help to uncover unanticipated blackout sce-
narios whose probability could then be elucidated by fur-
ther analysis. We believe that such an approach helping
to uncover possible blackout scenarios would foster further
work in order to improve current probabilistic models used
in power system reliability studies, in particular by forcing
power system engineers to better assess the probability of
the combinations of events leading to these situations. The
identification of dangerous events that are usually ignored
when planning and/or operating power systems will also raise
questions concerning the design of strategies to mitigate their
effects or decrease their probability of inception. In such a
context, we believe it would also be interesting to design
techniques able to identify whether there are some common
modes of instability behind these numerous dangerous events
that may potentially be discovered by such an approach. Then,
the knowledge of these modes could be exploited to take
specific actions (e.g., transmission investments, modification
of market rules) for increasing the security of the system.

From a technical viewpoint, our experiments also suggest
several research directions. At first, for a given stability prob-
lem, it would be interesting to identify which type of severity
function would lead to the best results. Some simulations,
not reported here, have shown that the performances of the
proposed framework is indeed strongly correlated to the nature
of this function. Second, in our opinion, it would also be
possible to improve the performances of existing cross-entropy
based methods by designing alternative algorithms for the
stochastic counterpart problem, whose solution is at the heart
of the cross-entropy method.

While the framework presented in this paper is certainly
attractive and can potentially lead to the development of
new tools for power system analysis, a careful evaluation of
the performances of these techniques with respect to other
apparented techniques, especially in the field of importance
sampling, would be interesting.
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